

Beginning Swift

Master the fundamentals of programming in Swift 4

Rob Kerr
Kåre Morstøl

BIRMINGHAM - MUMBAI

Beginning Swift

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded
in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned
in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this
information.

Acquisition Editor: Aditya Date
Content Development Editor: Taabish Khan
Production Coordinator: Vishal Pawar

First published: May 2018

Production reference: 1310518

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78953-431-3

www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos,
as well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why Subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals
•	 Learn better with Skill Plans built especially for you
•	 Get a free eBook or video every month
•	 Mapt is fully searchable
•	 Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packtpub.com/
http://www.packtpub.com/

Contributors

About the Authors
Rob Kerr is a mobile software architect based in United States. He has been working
professionally with Swift since its introduction, delivering applications to the public App
Store and through enterprise distribution. His current focus is developing state-of-the-art
iOS applications using Swift in the IoT space.

Kåre Morstøl is an independent software developer from Norway, with a bachelor's
degree in software development. He has programmed almost exclusively in Swift since it
was announced. He thinks it's a great language that is continually getting better.

Packt is Searching for Authors Like You
If you're interested in becoming an author for Packt, please visit authors.packtpub.
com and apply today. We have worked with thousands of developers and tech
professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

http://authors.packtpub.com/
http://authors.packtpub.com/

Table of Contents
Preface	 vii

Lesson 1: Swift Basics	 1
Swift Program Structure	 2

Hello, World!	 3
Swift Variables and Constants	 6

Declaring Swift Variables	 6
Variables Versus Constants	 7
Type Inference	 8
Variable Naming	 8

Working with Variables	 9

Tuples	 10
Creating a Tuple	 12

Optionals	 12
Declaring an Optional	 13
Working with Optionals	 14
Optional nil Values	 14
Accessing Optional Values	 15
Force Unwrapping an Optional	 15
Conditionally Unwrapping Optionals	 16
The Swift guard Statement	 17

Activity B: Variable Summary	 18
Swift Data Types	 19

Numeric Data Types	 20
Int on 64-Bit Versus 32-Bit Platforms	 20
Built-In Numeric Data Types	 20
Choosing the Appropriate Numeric Data Type	 20
Declaring and Assigning Integer Variables	 21
Declaring and Assigning Floating Point Numbers	 21
Numeric Literal Grouping	 22
Numeric Type Conversions	 22

Boolean	 25

Table of Contents

[ii]

Character	 25
Assigning a Character	 26
Constructing a Character Literal	 26

String	 27
Instantiating a String	 27
String Concatenation	 27
Extracting Characters	 28
String Length	 28

Activity C: Data Type Summary	 28
Enums	 30

Basic Enum Syntax	 30
Enum with Raw Values	 31
Activity D: Using Swift Enums	 32

Summary	 34

Lesson 2: Swift Operators and Control Flow	 35
Swift Operators	 36

Assignment Operator	 37
Arithmetic Operators	 37

Standard Arithmetic Operators	 37
Remainder Operator	 38
Unary minus Operator	 38
Compound Assignment Operators	 38

Comparison Operators	 38
Equality	 39
Inequality	 39
Comparison between Two Values	 39

Ternary Conditional Operator	 40
Logical Operators	 40
Bitwise Operators	 41
Nil-Coalescing Operator	 41
Range Operators	 41

Closed Range Operator	 42
Half-Open Range Operator	 42
One-Sided Range Operator	 42

Activity A: Operators	 43

Table of Contents

[iii]

Branching	 44
The if Statement	 45

Condition Lists	 46
Optional Unwrapping with if	 47

The switch Statement	 48
switch Statement Rules	 50
The break Keyword	 50
The fallthrough Keyword	 50
Matching Non-Scalar Values	 51
Multiple Patterns in a Single Case	 52
Using the where Statement within case	 52
Evaluating Optionals with a switch Statement	 53

Activity B: Converting Code from if to switch	 54
Loops	 55

The for…in Statement	 56
Iterating over Objects	 57
Iterating over Array Objects with index	 58
The for Loop where Clause	 58
The break Control Transfer Statement	 59
The continue Control Transfer Statement	 59

The while Loop	 61
The repeat…while Loop	 62

Activity C: Implementing Loops	 63
Summary	 65

Lesson 3: Functions, Classes, and Structs	 67
Functions	 68

Defining a Function	 68
Argument Labels	 69
Excluding Argument Labels	 70
Parameter Default Values	 71
Activity A: Implementing a Function	 72
Returning Values from Functions	 73
Using @discardableResult	 74
Function Attributes	 75

Table of Contents

[iv]

Variadic Parameters	 76
inout Parameters	 77
Recursion	 78
Functions as Parameters	 79
Closures	 80

Creating a Function to Receive Content from an Asynchronous Web Service Call	 81

Error Handling	 83
The do…catch Statement	 83
Multiple catch Blocks	 84
Using do without catch	 85
The guard Statement	 85
Activity B: Exception Handling	 87

Object-Oriented Features	 88
Object-Oriented Principles	 89
Classes Versus Structs	 89
Defining Classes and Structures	 90
Activity C: Creating a Customer Struct and Class	 91

Summary	 93
Challenge	 93

Lesson 4: Collections	 97
Arrays	 99

Working with Arrays	 99
Index	 101

Utilizing Common Operations with Index	 102

ArraySlice	 103
Creating Slices	 105
Creating Slices Using Range Operators	 105

Activity A: Working with Arrays	 106
Sets	 109

Working with Sets	 112
Combining Sets	 112
Comparing Sets	 113

Table of Contents

[v]

Activity B: Removing Duplicates from a Sequence	 113
Dictionaries	 115

Working with Dictionaries	 116
Activity C: Using Dictionaries	 117

Summary	 120

Lesson 5: Strings	 121
String Fundamentals	 121

Character	 122
Collection	 123
Index	 125

Working with String Index	 126

Debugging	 126
Activity A: All Indices of a Character	 127

Using Strings	 128
Creating Strings	 129
Common Operations	 130

Implementing Extra Text Operations on a String	 133

Activity B-1: All Ranges of a Substring	 133
Activity B-2: Counting Words, Sentences, and Paragraphs	 134

Substring	 136
Creating Substrings	 137

Parsing Strings	 138

Converting NSRange to Range	 139
Activity C: CamelCase	 140

Summary	 142

Lesson 6: Functional Programming and Lazy Operations	 143
Function Type	 144
Functional Methods	 145

filter	 145
Using the filter Method	 146

map	 146
Using the map Function	 147

Table of Contents

[vi]

flatMap	 148
Using the flatMap Function	 149

reduce	 150
Using the reduce Function	 150

Activity A: Implementing Functional Programming	 151
Lazy Operations	 152

Lazy Sequences	 153
Sequence Internals	 155
Creating Lazy Operations	 156

sequence(first:next:)	 156
sequence(state:next:)	 156

Activity B: Implementing a Lazy Version of a Method	 158
Swifty Code	 164

Naming	 165
Organizing Code	 166
Miscellaneous	 166

Writing Swifty Code	 167

Summary	 168
Further Study	 169
Challenge	 169

Index	 173

Preface
Swift is a multi-paradigm language. It has expressive features familiar to those used to
working with modern functional languages, whilst also keeping the object-oriented features
of Objective-C. Swift vastly streamlines the developer experience, and Apple's Xcode
playground is a real game-changer.

The book begins by teaching you the basic syntax and structure of Swift, and how to correctly
structure and architect software using Swift. It then builds expertise in the core Swift standard
library you will need to understand to complete real-world Swift programming projects.
We will work through concepts such as operators, branching and loop structures, functions,
classes, structs, collections, and strings. We end the book with a brief look at functional
programming and lazy operations.

After reading and understanding this book, you will be well-prepared to begin developing
native end-user applications for iOS or macOS, or to develop server-side (backend)
application and web services using Swift on Linux.

Preface

[viii]

What This Book Covers
Lesson 1, Swift Basics, covers the fundamentals of using the Swift programming language.
In this lesson, you'll learn basic Swift syntax and program structure. You'll also learn how
to use Swift built-in data types and enums, and how to declare and use Swift variables and
constants.

Lesson 2, Swift Operators and Control Flow, shows you how to use the fundamental flow
control structures and language elements that form the building blocks of Swift programs.
We will specifically cover operators, branching statements, and loops in this lesson.

Lesson 3, Functions, Classes, and Structs, teaches you how to develop fully featured Swift
functions, catch unexpected errors, and use asynchronous programming paradigms. You'll
learn how to create your own data types, and create object-oriented applications using
classes and structs.

Lesson 4, Collections, shows you how to work with Swift's collections, such as arrays, sets,
and dictionaries.

Lesson 5, Strings, covers Swift strings in detail. We will create and use strings and
substrings, and see the various common operations available for strings.

Lesson 6, Functional Programming and Lazy Operations, ventures at functional programming
and explains what lazy operations are. We will end this lesson with an important but often
overlooked topic—writing Swifty code.

What You Need for This Book
This book will require the following hardware:

•	 A Mac computer capable of running macOS Sierra 10.12.6+
•	 An internet connection

Please ensure you have the following software installed on your machine:

•	 Operating system: macOS Sierra 10.12.6+
•	 Xcode 9.1
•	 Safari browser

Preface

[ix]

Who This Book is for
This book is ideal for developers seeking fundamental Swift programming skills, in
preparation for learning to develop native applications for iOS or macOS. No prior Swift
knowledge is expected but object-oriented programming experience is desirable.

You should have basic working knowledge of computer programming in a procedural/
object-oriented language, such as Objective-C, BASIC, C++, Python, Java, or JavaScript.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of their
meaning.

Code words in text are shown as follows: "Finally, use the console print function to output
the content of each error variable."

Folder names, filenames, file extensions, pathnames, include file names in text are shown
as follows: "Launch Xcode as before, and create a new playground named Create a
Variable.playground."

A block of code is set as follows:

let name = "John Doe"
var address = "201 Main Street"
print("\(name) lives at \(address)")

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "Choose Blank as the
playground template, and then press the Next button."

Important new programming terms are shown in bold. Conceptual terms are shown in
italics.

Important additional details about a topic appear like this,
as in a sidebar.

Important notes, tips, and tricks appear like this.

Preface

[x]

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the Example Code
You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Preface

[xi]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

Swift Basics
Swift is a relatively new programming language designed by Apple Inc., and was initially
made available to Apple developers in 2014—primarily intended as a replacement for the
aging Objective-C language that was the foundation of OS X and iOS software development
at the time.

Unlike many object-oriented languages, which are based on older procedural languages—
for example, C++ and Objective-C are based on C—Swift was designed from the ground up
as a new, modern, object-oriented language that makes programming faster and easier, and
helps developers produce expressive code that's less prone to errors than many languages.

While not based on an older language, Swift, in the words of its chief architect, Chris
Lattner, "was inspired by drawing ideas from Objective-C, Rust, Haskell, Ruby, Python, C#, CLU,
and far too many others to list." (Chris Lattner home page: http://nondot.org/sabre/).

Swift was initially a proprietary language, but was made open source software in December
2015 as of its version 2.2. While Swift remains primarily used by developers targeting the
Apple macOS and iOS platforms, Swift is also fully supported on Linux, and there are
unofficial ports under development for Windows as well.

The objective of this lesson is to learn the fundamentals of using the Swift programming
language. In this lesson, you'll learn basic Swift syntax and program structure. You'll also
learn how to use Swift built-in data types and enums, and how to declare and use Swift
variables and constants. Let's get started.

Swift Basics

[2]

Lesson objectives
By the end of this lesson, you will be able to:

•	 Explain the program structure and syntax of Swift programs
•	 Declare and use Swift variables and constants
•	 Use the various built-in Swift data types
•	 Use the Swift enum language syntax

Swift Program Structure
In this first section, we'll look at the basic language syntax for Swift, and you'll write your
first fully functional Swift program.

Like many modern programming languages, Swift draws its most basic syntax from
the programming language C. If you have previous programming experience in other
C-inspired languages, such as C++, Java, C#, Objective-C, or PHP, many aspects of Swift
will seem familiar, and many Swift concepts you will probably find quite familiar.

We can say the following about Swift's basic syntax:

•	 Programs are made up of statements, executed sequentially
•	 More than one statement are allowed per editor line when separated by a

semicolon (;)
•	 Units of work in Swift are modularized using functions and organized into types
•	 Functions accept one or more parameters, and return values
•	 Single and multiline comments follow the same syntax as in C++ and Java
•	 Swift data type names and usage are similar to that in Java, C#, and C++
•	 Swift has the concept of named variables, which are mutable, and named constants,

which are immutable
•	 Swift has both struct and class semantics, as do C++ and C#

Lesson 1

[3]

If you have prior experience in other C-inspired languages, such as Java, C#, or C++, Swift
has some improvements and differences that will take some time and practice for you to
become accustomed to:

•	 Semicolons are not required at the end of statements—except when used to separate
multiple statements typed on the same line in a source file.

•	 Swift has no main() method to serve as the program's starting point when the
operating system loads the application. Swift programs begin at the first line of
code of the program's source file—as is the case in most interpreted languages.

•	 Functions in Swift place the function return at the right-hand side of the function
declaration, rather than the left.

•	 Function parameter declaration syntax is inspired by Objective-C, which is quite
different and often at first confusing for Java, C#, and C++ developers.

•	 The difference between a struct and a class in Swift is similar to what we have in
C# (value type versus reference type), but not the same as in C++ (both are the
same, except struct members are public by default).

For those coming to Swift from Java, C++, C#, and similar languages, your previous
experience with other C-inspired languages will help accelerate your progress learning
Swift. However, be sure to study the language syntax carefully and be on the lookout for
subtle differences.

Hello, World!
When learning a new language, it's traditional for a first program to make sure the
development environment is installed and properly configured by writing a program that
outputs something to the screen. That's what we'll do next.
Now, let's use an Xcode playground to create a simple Swift program to display the string
Hello, World to the playground console, by following these steps:

1.	 Begin by launching Xcode. You should be presented with a Welcome to Xcode
screen with the following commands listed on the left:

1.	 Get started with a playground
2.	 Create a new Xcode project
3.	 Clone an existing project

Swift Basics

[4]

2.	 Since we'll be writing code but not building an application in this lesson, choose the
Get started with a playground option to open an interactive code window.

Xcode playgrounds are provided to allow developers to quickly
experiment with Swift code. In addition to learning Swift, as we are in this
lesson, you can use playgrounds to develop functions and test whether a
specific fragment of Swift code will do what you expect.

3.	 Choose Blank as the playground template, and then press the Next button.
4.	 Next, Xcode will prompt where to save the playground. This will save your code

in a file with a playground file extension. Name the playground HelloWorld, and
save it to your desktop.

5.	 When Xcode creates a new playground, it adds some default code to the editing
window. Press ⌘A on your keyboard and then the Delete key on the keyboard to
delete the sample code.

6.	 In the now-blank editor window, add the following two lines of code:

let message = "Hello, World."
print(message)

Congratulations! You've just written your first Swift program. If you see the text Hello,
World. output in the bottom pane of the playground window, your program has worked.

Lesson 1

[5]

Before we move on, let's look at the structure of the playground window:

Swift Basics

[6]

Note the following regions in the playground window, as indicated by the numbers within
the red circles:

•	 1: At the top of the window is a status bar which tells you the state of the
playground.

•	 2: The editing pane of the window is where you type the code to run in the
playground.

•	 3: The right-hand pane of the playground window shows information about the
effect of each line of code. In this simple program, it shows the value message has
been set to ("Hello, World."), and the text that was sent to the console ("Hello,
World.\n"). Note the right pane discloses that the print() function added a
newline (\n) character to the output.

•	 4: The output pane of the playground window shows the debug console, which in
this case displays what the Swift program has output. If your code has errors, the
debug console will output information about those errors as well.

Now that we have a development environment up and running where we can create and
run Swift code, let's move on to learning about and using the Swift language.

Swift Variables and Constants
Virtually all programming languages include the ability for programmers to store values in
memory using an associated name chosen by the programmer. Variables allow programs to
operate on data values that change during the run of the program.

Declaring Swift Variables
A Swift variable declaration uses the following basic syntax:

var <variable name> : <type> = <value>

Given this syntax, a legal declaration for a Pi variable would be the following:

 var pi : Double = 3.14159

This declaration means: create a variable named pi, which stores a Double data type, and assign
it an initial value of 3.14159.

Lesson 1

[7]

The Swift Standard Library has Pi built in, accessed by using the Float.
pi and Double.pi properties.

Variables Versus Constants
You may want to store a named value in your program that will not change during the life
of the program. In the previous example, the value of Pi should never change during the
course of a program. How can we ensure that, once defined, this named value can never be
accidentally changed by our code?

Swift variables are declared using the var keyword, while Swift constants are declared using
the let keyword, for example:

var pi1 = 3.14159
let pi2 = 3.15159

In this code, the named value pi1 is a variable, and its value can be changed by the code
after it is declared. The following line of code later in the program would be legal, even
though it would result in an invalid value for pi1:

pi1 = pi1 * 2.0

On the other hand, since pi2 was declared as a constant, using the let keyword, the
following line of code later in the program would result in a compile-time error, since
changing a let constant is illegal:

pi2 = pi2 * 2.0

Generally, any time you create a named value that will never be changed during the run
of your program, you should use the let keyword to create a constant. The Swift compiler
enforces this recommendation by creating a compile-time warning whenever a var is
created that is not subsequently changed.

Other than the restriction on mutating the value of a constant once
declared (for safety), Swift variables and constants are used in virtually
identical ways, and you usually won't think about whether a symbol is a
variable or a constant after declaring it.

Swift Basics

[8]

Type Inference
In the previous example, we created the variable pi1 without specifying its data type. We
took advantage of a Swift compiler feature called type inference.

When you assign the value of a variable or constant as you create it, the Swift compiler will
analyze the right-hand side of the assignment, infer the data type, and assign that data type
to the variable or constant you're creating. For example, in the following declaration, the
compiler will create the variable name as a String data type:

var name = "George Smith"

As a type-safe language, once a data type is inferred by the compiler, it remains fixed for the
life of the variable or constant. Attempting to assign a non-string value to the name variable
declared above would result in a compile-time error:

name = 3.14159 // Error: "Cannot assign value of type 'Double' to 'String'

While Swift is a type-safe language, where variable types are explicit and do not change, it is
possible to create Swift code that behaves like a dynamic type language using the Swift Any
data type. For example, the following code is legal in Swift:

var anyType: Any
anyType = "Hello, world"
anyType = 3.14159

While this is legal, it's not a good Swift programming practice. The Any type is mainly
provided to allow bridging between Objective-C and Swift code. To keep your code as safe
and error-free as possible, you should use explicit types wherever possible.

Variable Naming
Swift variables and constants have the same naming rules as most C-inspired programming
languages:

•	 Must not start with a digit
•	 After the first character, digits are allowed
•	 Can begin with and include an underscore character
•	 Symbol names are case sensitive
•	 Reserved language keywords may be used as variable names if enclosed in

backticks (for example, `Int`:Int = 5)

Lesson 1

[9]

When creating variable and constant names in Swift, the generally accepted naming
convention is to use a camelCase naming convention, beginning with a lowercase
letter. Following generally accepted naming conventions makes code easier for others
to read and understand (https://swift.org/documentation/api-design-
guidelines/#follow-case-conventions).

For example, the following would be a conventional variable declaration:

var postalCode = "48108"

However, the following would not be conventional, and would be considered incorrect by
many other Swift developers:

var PostalCode = "48108"
var postal_code = "48108"
var POSTALCODE = "48108"

Unlike many other programming languages, Swift is not restricted to the Western alphabet
for its variable name characters. You may use any Unicode character as part of your
variable declarations. The following variable declarations are legal in Swift:

var helloWorld = "Hello, World"
var 你好世界 = "Hello World"
var 😊 = "Smile!"

Just because you can use any Unicode character within a variable name,
and can use reserved words as variables when enclosed in backticks,
it doesn't mean you should. Always consider other developers who
may need to read and maintain your code in the future. The priority for
variable names is that they should make code easier to read, understand,
and maintain.

Working with Variables
In this section, you'll use an Xcode playground to create a variable and constant, and
observe the difference between them. So, let's get started.

To work with variables, follow these steps:

1.	 Launch Xcode as before, and create a new playground named Create a
Variable.playground.

Swift Basics

[10]

2.	 Add the following code to the playground to create a constant (that is, an
immutable variable) named name, and a variable named address:
let name = "John Doe"
var address = "201 Main Street"
print("\(name) lives at \(address)")

In this code, both name and address store string text in named memory locations.
And we can include them both in the print statement in the same way.

3.	 Now add the following code to change John Doe's address and print the new
information to the console:
address = "301 Fifth Avenue"
print("\(name) lives at \(address)")

In the console output, the address is changed as expected.

4.	 Finally, let's try to change the string stored in the name variable:

name = "Richard Doe"

In this case, the Swift compiler generates a compile-time error:

Cannot assign to value: 'name' is a 'let' constant

By declaring name as an immutable variable with let, we let the compiler know no code
should be allowed to change the content of the variable after its value is initially set.

Tuples
One of Swift's unique language features is its inclusion of tuples. By default, variables and
constants store a single value. Tuples allow a variable or constant name to refer to a set of
values. While tuples do not exist in many languages, you can think of them as compound
values, and they function almost identically to a structure, which is a single named object
which can store more than one variable embedded within it.

By using a tuple, we could take the following variable declaration:

var dialCode = 44
var isoCode = "GB"
var name = "United Kingdom"

We could combine it to the following:

var country = (44, "GB", "United Kingdom")

Lesson 1

[11]

Then we can access the individual members of the tuple as follows:

print(country.0) // outputs 44
print(country.1) // outputs GB
print(country.2) // outputs United Kingdom

Tuple members can also be given individual names, as follows:

var country = (dialCode: 44, isoCode: "GB", name: "Great Britain")

print(country.dialCode) // outputs 44
print(country.0) // also outputs 44!
print(country.isoCode) // outputs GB
print(country.name) // outputs United Kingdom

Swift functions can accept multiple input parameters, but return only one value. A common
use case for a tuple variable type is to include more than one value from a function:

func getCountry() -> (dialCode: Int, isoCode: String, name: String) {
 let country = (dialCode: 44, isoCode: "GB", name: "United Kingdom")
 return country
}

let ret = getCountry()

print(ret)

A second way to return multiple values from a function is to use inout parameters, which
allows a function to change the value of an input parameter within that function.

While there are valid use cases for changing inout parameter values, returning a tuple has
the advantage of returning a value type—rather than modifying input values.

Tuples behave much like structures—which are predefined compound
data types in Swift and many other languages. You may be tempted to
use tuples rather than making the extra effort to create structures since
they provide similar utility. Be careful not to overuse tuples. They are
convenient for ad hoc, lightweight composite data types, but when used
in complex programming, use cases can result in code that's more difficult
to understand and harder to maintain. Use tuples as they're intended, as a
means to bundle a few related components of a data element.

Swift Basics

[12]

Creating a Tuple
Let's look at creating a tuple. We'll use an Xcode playground to create and use a tuple. Here
are the steps:

1.	 Launch Xcode as before, and create a new playground named Create a Tuple.
playground.

2.	 Add the following code to the playground to create a tuple containing a person's
name, address and age:
let person1 = ("John Doe", "201 Main Street", 35)
print("\(person1.0) lives at \(person1.1) and is \(person1.2) years
old.")

This code is very similar to the previous , except that we've used a tuple to group
together values describing John Doe—rather than using separate variables for each
element.
While this syntax is legal, acceptable, and common, it can begin to result in difficult
to understand and maintain code—especially when a tuple contains more than two
simple values. To make a tuple more maintainable, you can give variable names to
each of its components.

3.	 Add the following to the playground:

let person2 = (name: "Jane Doe", address: "301 Fifth Avenue", age: 35)
print("\(person2.name) lives at \(person2.address) and is \(person2.age)
years old.")

In this second approach, each member of the tuple has a descriptive name, making
it easier for the reader of the program to understand and maintain the code.

Optionals
Another unique language feature Swift provides is the optional. In most programming
languages, all variables and constants must hold some value. But, in the real world,
sometimes a value is unknown. For example, an address may or may not contain a second
address line, and more than 60 countries in the world don't use postal codes. Optionals
allow variables to indicate whether their value is missing (that is, not assigned), or is truly a
blank value.

Lesson 1

[13]

When variables are declared optional in Swift, they behave very similarly
to column values in SQL database such as Oracle, SQL Server, and
MySQL.

Optionality for Swift variables is optional (pun intended). To declare a variable as an
optional, add a question mark (?) to the end of its data type (or assign another optional
variable's value to it so the optional property is inferred from the existing variable).

The following variable name is not an optional:

var name: String = "Hello"

This next variable name is an optional, and has an initial value of nil:

var name: String?

The presence of the question mark intuitively expresses that the variable may—or may
not—contain a string. If the optional is not assigned a value, it will automatically be set to
nil, meaning it has no value.

Declaring an Optional
Earlier in this lesson, we declared variables with initial values assigned. These variables
are not optional, have a value, and can never be assigned a nil value, or an unwrapped
optional variable's value.

In this section, we define a variable as an optional by adding a question mark to the type
name, which makes it subject to the Swift compiler's optional validation rules.

A third possibility is to declare a force unwrapped variable—a variable that can be nil, but
is not optional. This type of variable is declared by placing an exclamation point (!) after
the type (rather than the question mark (?) for the optional), for example:

var customerAge: Int!

When a variable is declared in this fashion, the compiler will allow the variable to be
assigned a nil value at any time, but will not warn the programmer at compile time when
the variable's value is (or could be) assigned a nil value.

There are limited circumstances where this technique is required, and in general it should
be avoided.

Swift Basics

[14]

Why don't we make all variables optional? Optional is a powerful Swift
feature, but working with optional variables requires more code as they
are used, primarily to check for nil values before accessing the optional
value. In general, you should use optional variables when variables
may be missing values, but not use optional variables when you know a
variable will always have a value.

Working with Optionals
As mentioned, the simplest way to declare a variable as an optional is to append the data
type with a question mark, for example:

var name: String?

Because of Swift's type inference, the following line of code will create a second variable of
optional type:

var nameCopy = name

The syntax to assign a value to this variable is the same as it would be if the variable was
not declared as optional:

name = "Adam Smith"

The difference between optional and non-optional variables is primarily when you access
the value of an optional, which we'll cover next.

Optional nil Values
Optional variables in Swift can be directly compared to the absence of value (nil) and
assigned a nil value. For example, in the following two statements, variable a initially has
a value of 4, then is assigned a nil value, and then is checked for having a nil value:

var a: Int? = 4
a = nil
if a == nil {
 print("a is nil")
}

While the presence or absence of a value within an optional can be directly tested,
extracting and using the value contained within an optional requires that the optional (the
envelope) be unwrapped, and the content (value) extracted. We'll learn how to do this next.

Lesson 1

[15]

Accessing Optional Values
Think of an optional as a value wrapped in an envelope. You cannot access the contents of an
envelope without opening it (unwrapping it), and then removing the contents.

You can primarily unwrap an optional and use its value in two ways:

•	 Force unwrap
•	 Conditional unwrap

We'll learn each of these techniques next.

Force Unwrapping an Optional
Look at the two optional Int variables:

var a: Int?
var b: Int = 4

You could attempt to assign a to b, for example:

b = a

But this would result in a compile-time error:

Value of optional type 'Int?' not unwrapped; did you mean to use '!' or
'?'?

As the error indicates, accessing the value of an unwrapped optional variable is (always)
illegal. One approach to solving this problem is to force unwrap the variable as we use it.
To force unwrap a variable, simply place an exclamation mark (!) after the variable name,
for example:

b = a!

Force unwrapping is similar to using a type cast in many languages. In Swift, a force
unwrap tells the compiler to assume that the optional contains a value.

However, a force unwrap shifts all the responsibility to the programmer for ensuring
optionals actually have values. The above example, b = a!, would allow the code to
compile, but would generate the following runtime error, and the application will crash:

Fatal error: Unexpectedly found nil while unwrapping an Optional value

Because variable a is an optional with no value, there is no value to extract from it to assign
to b.

Swift Basics

[16]

Force unwrapping should not be viewed as a way to get around compiler
type-safety features. Only use force unwrapping when you're absolutely
certain that it's impossible for an optional variable to contain a nil value.
In the following code, a force unwrap would be acceptable:

var a: Int? = 2
var b: Int = 4
b = a!

Conditionally Unwrapping Optionals
While there are times when force unwrapping variables is safe, you should typically take
advantage of Swift's type-safety features by using conditional unwrapping.

With conditional unwrapping, we ask the compiler to first check whether the optional has a
value, and return the value if present, or nil if not.

For example, to assign the value of optional a to a new, non-optional variable b, we can use
the following code:

var a: Int? = 4
if let b = a {
 print(b)
}

This code snippet would print the value 4 to the console. If we had not assigned the initial
value 4 to a, then nothing would have been printed.

Using Optionals
Use an Xcode playground to create and use an optional, by performing the following steps:

1.	 Launch Xcode as before, and create a new playground named Using Optionals.
playground.

2.	 Add the following code to the playground to create an optional containing a
person's name:
var name: String? = nil

3.	 Now add the following code to check whether the optional is nil:
if name == nil {
 print("name is nil")
} else {

Lesson 1

[17]

 print("name is not nil")
}

Of course, since we assigned the value nil, it is nil.
A more common way to check for a non-nil optional is to use the if/let syntax
covered previously.

4.	 Add the following code to assign a value to the optional content, then print it to the
console:
name = "John Doe"
if let n = name {
 print(n)
} else {
print("the name is still nil")

Because you assigned a value to the variable name, the string John Doe is printed
to the console.

5.	 Finally, comment out the variable assignment. The output will now change to the
name is still nil, because the if/let syntax detected that the variable name
contains no value.

The Swift guard Statement
It's very common that Swift functions should only execute when parameters passed to them
are in an expected state. In early versions of Swift, the conditional unwrapping technique
was often used to provide this type of safety checking. For example, a function that accepts
an optional Int value, but should only proceed when the parameter is not nil might look
as follows:

func doubleValue(input: Int?) -> Int? {
 if let i = input {
 return i * 2
 }
 return nil
}

While this function is only a few lines of code, imagine if the work done on the unwrapped
variable was more complex. To allow parameter and other data state checking to be
concisely done at the beginning of functions, Swift includes a guard keyword.

Swift Basics

[18]

The following is a version of doubleValue that uses the guard syntax to place data state
checks at the top of the function:

func doubleValue(input: Int?) -> Int? {
 guard let i = input else { return nil }
 return i * 2
}

This is the end of this section. Here, we have had a deep look at how to declare variables
and constants in Swift. We also worked with tuples and optionals.

Activity B: Variable Summary
In Swift, variables are declared before being used. Variables can be declared in various
ways, and may not even need to have their type explicitly stated when the compiler can
infer data type from initial assignment.
Use an Xcode playground to practice how to declare variables, constants, and tuples.

1.	 Launch Xcode as before, and create a new playground named Topic B Summary.
playground.

2.	 Add the following code to the playground to create three variables storing values
related to the weather conditions in Berlin:
let cityName = "Berlin"
var humidityPercentage: Double?
var temperatureCentigrade: Double?

Note that cityName is a constant, non-optional variable, with an initial string
value. Since we know the name of the city in advance, and it doesn't change for this
program, it's most appropriate to use let to declare this value as a constant.
humidityPercentage and temperatureCentigrade are declared as optional,
since we do not yet know the weather conditions in Berlin at the start of this
program.

3.	 Next, add the following line of code to create a tuple to collect the weather report
data into a single variable named weather:
var weather = (city: cityName, humidityPercentage: humidityPercentage,
temperature: temperatureCentigrade)

Recall that providing reference names for each tuple member is optional, but
is included here to make the remaining part of the program clearer to other
programmers who may need to read this program later.

Lesson 1

[19]

4.	 Next, set the value of humidity within the tuple:
weather.1 = 0.70

Note that even though you created a reference name for humidity
(humidityPercentage), you can still set the value using the ordinal position
within the tuple. The following line of code would probably be better in this case:

weather.humidityPercentage = 0.70

5.	 Now print the tuple to the console. On noticing that the variable provided is a
tuple, the console print() function prints all members of the tuple—along with
the reference names provided:
print(weather)

The output of the print statement is as follows:

(city: "Berlin", humidityPercentage: Optional(0.69999999999999996),
temperature: nil)

6.	 Finally, print each of the tuple's components, each on its own line:

print("City: \(weather.city)")
print("Humidity: \(String(describing:weather.humidityPercentage))")
print("Temperature: \(String(describing:weather.temperature))")

The output of this code is as follows:

City: Berlin
Humidity: Optional(0.69999999999999996)
Temperature: nil

Swift Data Types
Like most programming languages, Swift includes a full complement of built-in data types
that store numbers, characters, strings, and Boolean values.

In the previous section, we covered the use of Swift optionals, and
worked through several examples declaring an Int variable as optional
and non-optional. Keep in mind that any Swift variable, of any type, can
be declared as an optional.

Swift Basics

[20]

Numeric Data Types
Like most programming languages, Swift provides built-in numeric data types that
represent either integer or floating-point values.

Int on 64-Bit Versus 32-Bit Platforms
While it's likely you'll develop Swift applications exclusively on 64-bit platforms, it's
important to know that Swift is available on both 32-bit and 64-bit platforms. When
using a generic integer numeric type (Int or UInt), the generic type will be mapped to an
underlying, specific equivalent that matches the current platform's word size. For example,
on a 64-bit platform, Int is mapped to Int64; on a 32-bit platform, the same Int type is
mapped to an Int32.

Built-In Numeric Data Types
The following table summarizes the available Swift numeric data types:

Type Min value Max value
Int8 -128 127
Int16 -32768 32767
Int32 -2.1 x 109 2.1 x 109
Int64 -9.2 x 1018 9.2 x 1018
UInt8 0 255
UInt16 0 65535
UInt32 0 4.3 x 109
UInt64 0 1.8 x 1019
Double -1.8 x 10308 1.8 x 10308
Float -3.4 x 1038 3.4 x 1038

Choosing the Appropriate Numeric Data Type
Conceptually, a UInt64 variable will consume four times more RAM than a UInt8 variable,
so you may ask, "Should I tune my variables by selecting the smallest number of bits needed to
meet requirements?"

Lesson 1

[21]

While it may seem intuitive to select the numeric type that uses the least RAM to store
the variable's expected range of values, it's usually preferable to use the generic integer
types (for example, Int when declaring integers and Double when declaring floating-point
numbers).

This is a reference from The Swift Programming Language (Swift 4):
"Unless you need to work with a specific size of integer, always use Int for
integer values in your code. This aids code consistency and interoperability."
Visit https://developer.apple.com/library/content/
documentation/Swift/Conceptual/Swift_Programming_
Language/ for the official documentation.

Declaring and Assigning Integer Variables
Integer values may be instantiated using base 10 (decimal), base 2 (binary), base 8 (octal), or
base 16 (hexadecimal) literal values, or by assigning another Int variable of the same type
to the new variable.

For example, assigning the number 100 to a new Int variable holding a duration in minutes
can be done in any of the following ways:

let minutes = 100 // decimal
let minutes = 0b1100100 // binary
let minutes = 0o144 // octal
let minutes = 0x64 // hexadecimal

Declaring and Assigning Floating Point Numbers
Floating-point numbers are represented by either Float or Double data types. In general,
you should use Double—and employ Float only when specific circumstances require using
the smaller, 32-bit numeric variable.

Declaring and assigning value to floating-point variables follows the same syntax rules as
with integer variables. For example, the following statement creates a new Double variable
interestRate, and assigns an initial value to it:

var interestRate = 5.34

Swift Basics

[22]

Numeric Literal Grouping
When assigning constant values to numeric types, Swift provides a handy format to make
code more readable: the underscore character is ignored when parsing numeric literals.

This feature is most commonly used to provide groupings of thousands in a large integer or
floating-point assignments, but actually can be used to provide any grouping separation
that makes code more readable. For example, the following statements all assign the value
100,000 to the variable minutes:

var minutes = 100000
var minutes = 100_000
var minutes = 10_00_00
var minutes = 0b110_000110_101000_00

Using the underscore for readability can also be used for floating-point literal values. For
example, the following statements are equivalent:

var balance = 10000.44556
var balance = 10_000.44_556

Numeric Type Conversions
Like many fully compiled languages, Swift is a strongly typed language, and requires
explicit type conversions (or casts) when assigning the value from one variable type to a
variable of a different type.

Many new Swift programmers find that Swift is even stricter than languages they've used
before. In many programming languages, the compiler will implicitly convert between
data types during an assignment so long as the value contained within the variable being
assigned (on the right of the equals sign) could not overflow the variable being assigned to
(on the left of the equals sign).

In other words, in many languages, the following code would be legal, since an Int8 is
known to always fit into an Int16 without a numeric overflow:

Int8 smallNumber = 3;
Int16 mediumNumber = smallNumber;

However, this equivalent code in Swift would result in a compile-time error:

var smallNumber: Int8 = 3
var mediumNumber: Int16 = smallNumber

Lesson 1

[23]

This code would generate the following error:

error: cannot convert value of type 'Int8' to specified type 'Int16'

In Swift, it's always the programmer's responsibility to ensure that assignments have the
same data type on the left and right of the assignment operator (that is, the equals sign).
The following code corrects the compile-time error:

var smallNumber: Int8 = 100
var mediumNumber: Int16 = Int16(smallNumber)

This requirement for explicit type assignment is one reason why most
Swift programming uses the generic numeric variables Int and Double,
except when specific usage requires tuning for numeric range or memory
storage size.

Using Numeric Types
Now, let's see how to use various numeric variable types by following these steps:

1.	 Launch Xcode as before, and create a new playground named Topic B Using
Numeric Types.playground.

2.	 Add the following code to the playground to create three Int variables, using
binary, base10, and base16 literal notation, respectively:
var base2 = 0b101010
var base10 = 42
var hex = 0x2A

3.	 Now add the following three corresponding lines to print the data type and value
for each of the variables you just created.
print("Printing \(type(of: base2)): \(base2)")
print("Printing \(type(of: base10)): \(base10)")
print("Printing \(type(of: hex)): \(hex)")

Examining the output, note that the three variables all have the same data type
(Int) and same value (42 in base 10).

Swift Basics

[24]

4.	 Add the following lines of code to create two more variables, and to print the types
and values for each:
var scientific = 4.2E+7
let double = 4.99993288828
print("Printing \(type(of: scientific)): \(scientific)")
print("Printing \(type(of: double)): \(double)")

Note that both variables were created as Double types—even though the value
of the first is actually an Integer. Swift's inference system doesn't always look at
the actual value. In this case, the presence of scientific notation in the literal value
caused Swift to assume the value should be a Double.

5.	 Now add the following lines to cast and round the variable named double to an
Int:
var castToInt = Int(double)
var roundToInt = Int(double.rounded())
print("Printing \(type(of: castToInt)): \(castToInt)")
print("Printing \(type(of: roundToInt)): \(roundToInt)")

As you probably expected, the castToInt discarded the fractional value of the
original double variable. For the roundToInt variable, we called the .rounded()
function on the variable double, and then cast that value. Since 4.999 was rounded
up to 5 before being cast, the Int contains the rounded value.

6.	 Finally, add the following lines to create a very large unsigned integer and then
print its type and value:

var bigUnsignedNumber:UInt64 = 18_000_000_000_000_000_000
print("Printing \(type(of: bigUnsignedNumber)): \(bigUnsignedNumber)")

This code works as expected—printing an integer with 20 digits (the underscore is
added to help count how many digits there are).
Note that in this case, we specified UInt64 should be the data type for this variable.
Had we not made the type explicit, Swift's type inference rules would have
assigned the smaller Int data type to the variable, and it would have overflowed.

Again, keep in mind the inference engine examines the format of a constant perhaps more
than the value of the numeric value being assigned. You should rely on the inference
engine by default, but keep in mind you may sometimes need to be explicit when you
know more about how a variable will be used than Swift can infer.

Lesson 1

[25]

Boolean
In Swift, the Boolean data type is Bool, and stores a value of true or false. As with
other data types, in the case that a Bool value is not yet known, a Bool can be declared as
optional, for example, Bool?.

For example, the following code declares a Boolean in Swift, and then changes its value:

var isChecked = false
isChecked = true

Testing for the value of a Bool value is similar to how we do it in other C-inspired
languages, for example:

if isChecked {
 // statements to execute if isChecked is true
}
if isChecked == true {
 // statements to execute if isChecked is true
}
if !isChecked {
 // statements to execute if isChecked is false
}

Character
The Character data type in Swift is an extended grapheme cluster.

What does that mean?

An extended grapheme cluster is an ordered sequence of one or more Unicode scalars (that
is, values) that, when taken together, produce a human-readable character.

Most important to understand is that, unlike ASCII or ANSI character representations
many programmers have worked with before, a Character in Swift may be made of more
than one Unicode value.

In Swift 4, the underlying complexities of Unicode, scalar values, and extended grapheme
clusters are largely managed for you, but as you begin to work natively with Unicode
characters and strings, bear in mind that the Swift Character/String architecture was
developed from the ground up around Unicode character representation—not ANSI/ASCII
as many other languages were.

Swift Basics

[26]

Assigning a Character
The following are two examples creating new Character variables, and assigning literal
values:

let ch1:Character = "A"
let ch2:Character = "😎"

Note the following regarding this assignment:

•	 In Swift, a Character literal is delimited by a double quote, rather than the single
quote that's common in most C-inspired languages.

•	 Because the Swift compiler's type inference rules will assume double quotes around
a literal imply a string variable, the above ch1 assignment must explicitly declare
the variables as Character type—otherwise the Swift compiler will create ch1 as a
string.

Constructing a Character Literal
To construct a Character type using Unicode values, you can assign an escape sequence, or
use the UnicodeScalar struct to create a Character using numeric Unicode values as input.

The following line of code creates a UnicodeScalar from the value 65 (the ASCII value for
the English letter A), and then assigns it to the immutable variable ch1:

let ch1 = Character(UnicodeScalar(65))

In this case, there is no ambiguity with regards to double quotation marks, so it's not
necessary to explicitly assign the Character type during this assignment.

It's also common to construct a Character using a UnicodeScalar escape sequence within
double quotation marks. The following creates a character variable containing an emoji
character represented by the UnicodeScalar 1F601:

let ch3 = "\u{1F601}" // sets ch3 to "😁"

While Unicode scalars are conceptually similar to ASCII/ANSI value encoding, Swift
Characters may be made of more than one numeric value, while ASCII and ANSI use only
one numeric value to represent each character.

For example, an accented Western letter is expressed by providing a UnicodeScalar
containing two character values.

Lesson 1

[27]

We can construct the Unicode representation of an accented e character as follows:

let ch4 = "e\u{301}" // é

The expression on the right of the assignment contains the literal letter e, followed by
the escaped value for the accent modifier (301). The Swift compiler combines these two
elements into a single extended grapheme cluster.

String
Strings in Swift are very similar to strings in other programming languages. As string
handling is so central to any application development project, we'll dedicate an entire
subsequent lesson to Swift's powerful string handling capabilities. In this section, we'll
discuss the basics for declaring and using a string.

Fundamentally, strings are arrays of the Character types, supporting the familiar
assignment operator (=), substrings, concatenation, and C-inspired escape characters.

Instantiating a String
Instantiating a string variable is highly intuitive. The following statements create string
variables:

var alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
let macCharacters = "⌘⌃⌥⇧ ⏎⌫⇪⎋⇥"
let emoji = "😎😂🎃🐳🍎😜😆"

String Concatenation
As in many languages, Swift strings can be concatenated using the plus (+) operator:

let alphaMac = alphabet + macCharacters

String also supports the unary addition operator:

alphabet += macCharacters

Swift Basics

[28]

Extracting Characters
One difference between Swift strings and strings in many languages is how individual
elements of strings are accessed. Specifically, the following syntax with Swift strings is
illegal:

let ch = alphabet[4]
error: 'subscript' is unavailable: cannot subscript String with an Int, see
the documentation comment for discussion

In Swift, the input to the subscript operator (that is, what's between the [] characters) is
expected to be of type String.Index, not Int.

In practice, you will construct an Index, then pass the index to the substring operator, for
example:

let idx = alphabet.index(alphabet.startIndex, offsetBy: 4)
let ch = alphabet[idx] // ch is assigned the character "E"

String Length
Obtaining the length of string is quite easy—simply call the count property of a string:

var alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
let alphabetLength = alphabet.count // 26

We have now reached the end of this section. Here, we worked with the different data
types in Swift, specifically numeric, Boolean, character, and string data types.

Activity C: Data Type Summary
Now that you've learned about the various data types available with Swift, let's put
this knowledge into practice by using various types together, and also using the Apple
Foundation framework.

Use an Xcode playground to practice various data types. You'll be using numeric data
types, formatting them as strings, and using string interpolation to print string values from
various data types.

1.	 Launch Xcode as before, and create a new playground named Data Type
Summary.playground.

2.	 Add the following code to the playground to create an immutable Double with an
initial value:
let dVal = 4.9876

Lesson 1

[29]

3.	 Next, create a Boolean mutable variable with an initial value of true, and another
variable set to the Double variable after rounding to a whole number:
var iValRounded = true
var iVal = Int(dVal.rounded())

4.	 Next, we're going to use a class from Foundation to create a string representation
of the Double value, rounded to two digits. If you're not familiar with
NumberFormatter, don't worry. This is just one of the many utility classes Apple
provides in its expansive SDK for macOS and iOS:
var formatDigits = 2
let nf = NumberFormatter()
nf.numberStyle = .decimal
nf.maximumFractionDigits = formatDigits
let formattedDouble = nf.string(from: NSNumber(value: dVal)) ?? "#Err"

Because NumberFormatter.string returns an optional, we need either to check it
(with if/let, or as here, provide a default value ("#Err") in case the function does
return nil.

5.	 Now add the following line to print a statement about the values we've created:
print("The original number was \(formattedDouble) (rounded to \
(formatDigits) decimal places), while the value \(iValRounded ?
"rounded" : "unrounded") to Integer is \(iVal).")

The output of this code is as follows:

The original number was 4.99 (rounded to 2 decimal places), while the
value rounded to Integer is 5.

6.	 Finally, add the following lines to change the rounding strategy, and print a
sentence about the result of the new string conversions:

formatDigits = 0
nf.maximumFractionDigits = formatDigits
formattedDouble = nf.string(from: NSNumber(value: dVal)) ?? "#Err"
iValRounded = false
iVal = Int(dVal)
print("The original number was \(formattedDouble) (rounded to \
(formatDigits) decimal places), while the value \(iValRounded ?
"rounded" : "unrounded") to Integer is \(iVal).")

The output of this second sentence is as follows:

The original number was 5 (rounded to 0 decimal places), while the value
unrounded to Integer is 4.

Swift Basics

[30]

Enums
Enums are frequently used in Swift to create custom data types that have a predefined
set of possible values to select from. Enums serve to make code more readable and
maintainable, and also provide compile-time checking for parameters and value
assignments which yield higher quality, more robust code.

Many languages provide built-in enum features, and Swift's implementation of the enum
is very similar to other languages. Swift does have some unique enum features, which we'll
cover in this section.

Basic Enum Syntax
Consider the following code, which creates and uses a basic enum:

enum DayOfWeek {
 case monday, tuesday, wednesday, thursday, friday
}

var today = DayOfWeek.wednesday

if today == .friday {
 print("Today is Friday")
} else {
 print("Today is not Friday")
}

Defining the enum DayOfWeek declares a new data type, which can be used just like any
other data type. Because the variable today is of the type DayOfWeek, which can only be
assigned one of the seven listed values, we could not assign anything else. For example, the
following code would generate a compile-time error, because Saturday is not included in
the predefined values:

Var today = DayOfWeek.saturday

The preceding example illustrates the two most important advantages of enums:

•	 Possible values are restricted to a predefined list, making assignment of invalid
values something that is tested at compile time rather than at runtime.

•	 Code that uses enums become self-documenting and easier to understand.

Lesson 1

[31]

Enum with Raw Values
In the preceding enum example, the enum values (.monday, .tuesday, and so on) have
no underlying data type. For example, we might want to calculate the day of week by
subtracting the ordinal number for the today variable from .monday.

However, with the enum as defined, there is no numeric value associated, so the following
code will fail to compile:

var nthDay = today - DayOfWeek.Monday

This code generates the following error:

Binary operator – cannot be applied to two 'DayOfWeek' operands

This is by design, because unlike some languages, a Swift enum need not be mapped to a
native data type (and should not be, if there's no reason to do so).

However, Swift enums can be mapped to any underlying data type. In the following
revision, we map the day of week to the Int data type, which enables the nth day of the week
calculation mentioned above:

enum DayOfWeek: Int {
 case monday, tuesday, wednesday, thursday, friday
}

var today = DayOfWeek.Wednesday // DayOfWeek.wednesday
var nthDay = today.rawValue - DayOfWeek.monday.rawValue + 1 // 3
var tomorrow = DayOfWeek(rawValue: today.rawValue + 1) // DayOfWeek.
thursday

In this case, all we needed to do was add a native data type (Int) to the enum declaration.
The Swift compiler then holds a .rawValue property. When an enum has an underlying
value, it also becomes possible to create an enum member by passing it to the rawValue:
parameter of the enum initializer.

Use care with raw values. Passing a rawValue: to an enum initializer
that does not match a defined case within the enum results in the creation
of a nil optional.

Swift Basics

[32]

In the preceding example, we used Int as the raw value for the revised DayOfWeek enum.
Swift allows any data type to serve as the underlying value of an enum. For example, we
could use String instead of Int to enable the following use case:

enum DayOfWeek: String {
 case monday = "Monday"
 case tuesday = "Tuesday"
 case wednesday = "Wednesday"
 case thursday = "Thursday"
 case friday = "Friday"
 case saturday = "Saturday"
}

var today = DayOfWeek.Wednesday // DayOfWeek.wednesday
let dayString = today.rawValue // "Wednesday"

In this section, we have looked at enums in detail. We saw its syntax and how to define an
enum with raw values. We will now work through an activity where we will use enums to
implement error codes.

Activity D: Using Swift Enums
Enumerations are a powerful construct available in many programming languages.
Enumerations make code more robust and easier for others to understand and maintain.

Use Xcode to define error codes using conventional error number techniques, and
alternatives that use Swift enums.

1.	 Launch Xcode as before, and create a new playground named Activity D -
Using Numeric Types.playground.

2.	 Add the following lines of code to create a set of error codes using simple integer
values:
// Store an error condition as an integer
let success = 0
let ioFailure = 1
let timeoutFailure = 2

Lesson 1

[33]

3.	 Now create the same set of error codes using an enum without a raw value:
// Store an error condition as an enum type
enum Result {
 case success
 case ioFailure
 case timeoutFailure
}

4.	 Finally, create the same set again, this time using an enum with a raw Integer value
associated with each result code:
// Store an error condition as an enum type with raw value
enum ResultWithRawValue: Int {
 case success = 0
 case ioFailure = 1
 case timeoutFailure = 2
}

5.	 Now let's use these error values by creating a new variable, assigning the
ioFailure error condition to each one:
let error1 = ioFailure
let error2 = Result.ioFailure
let error3 = ResultWithRawValue.ioFailure

6.	 Finally, use the console print function to output the content of each error variable.
Note how each one is represented to the console:

// Now print out the error result from each case.
print("File access resulted: \(error1)")
print("File access resulted: \(error2)")
print("File access resulted: \(error3)")
print("File access resulted: \(error3.rawValue)")

Swift Basics

[34]

Summary
In this lesson, we've learned the basic language structure and syntax for the Swift
programming language. We've now understood the following concepts:

•	 The fundamental structure of Swift programs, and how to use an Xcode playground
to develop simple and complex programs

•	 How to create and use mutable and immutable Swift variables
•	 The built-in data types available to Swift programs, and how to select the

appropriate data type depending on circumstance
•	 Swift's powerful optional construct for detecting and branching program flow when

data values are not available
•	 Swift's type inference and strict type safety syntax and usage

Now that you have the basics well in hand, we're ready to move on to the next lesson,
where we'll learn how to use these language elements in complex Swift programs.
Specifically, we'll look at the control flow structures and operators offered by Swift.

Swift Operators and Control
Flow

In the last lesson, you learned the fundamentals of Swift syntax, data types, and how to use
variables to store and operate on data in a Swift program.

In this lesson, you'll learn how to use the fundamental flow control structures and language
elements that form the building blocks for Swift programs.

Swift contains a full set of flow control constructions that help you build logic and organize
applications. Swift implements control structures you'll find familiar, and Swift adds
modern features and extensions not available in some other languages.

This lesson also covers the broad range of Swift logical and bitwise operators. Swift
supports a comprehensive set of operators, based on the C operator construction—but with
modern extensions that we'll fully cover in this lesson.

Lesson objectives
By the end of this lesson, you will be able to do the following:

•	 Use the assignment, arithmetic, and bitwise operators
•	 Use Swift's comparison operators
•	 Explain the functionality of Swift's range operators
•	 Use the Swift branching features: if and switch
•	 Control program flow with loops, such as for, while, and repeat/while

Swift Operators and Control Flow

[36]

Swift Operators
Operators are special characters—usually drawn from mathematics—that are used to
process evaluations, modify variable values, and combine values. Swift operators break
down into categories by the function they perform:

•	 Assignment operators
•	 Arithmetic operators
•	 Comparison operators
•	 Logical operators
•	 Bitwise operators
•	 Nil-coalescing operators
•	 Range operators

Refer to the following diagram:

Swift implements its assignment, arithmetic, comparison, logical, and bitwise operators
nearly identically to other C-inspired languages, such as C++, Java, and C#—so your
previous experience with these operators will apply directly to Swift programming.

Lesson 2

[37]

In this lesson, we'll summarize this common set of operators, and only highlight unique
Swift implementations. Should you need detailed information on the meaning of any of
these operators, please refer to Apple's The Swift Programming Language guide (https://
developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_
Programming_Language/).

The nil coalescing and range operators are unique to Swift and you may not have
encountered them before—we'll cover these operators in detail.

Assignment Operator
Swift uses the equals sign (=) to assign the value of one object to another, for example:

let x = 3.0

Like most languages, the equals sign (=) is not overloaded for comparison. Thus, the
following is not a valid if statement:

if x = 3 {
 // do something
}
// error: use of '=' in a boolean context, did you mean '=='?

Arithmetic Operators
Let's look at the arithmetic operators, beginning with the standard ones.

Standard Arithmetic Operators
Swift supports the four standard arithmetic operators for number types:

Addition +
Subtraction -
Multiplication *
Division /

Swift Operators and Control Flow

[38]

Remainder Operator
Swift's remainder operator (%) returns the remainder when a second operand is divided
into a first operand. For example, the result (r) in the following expression is 2, since
14/4=3, with a remainder of 2:

let r = 14 % 4 // r == 2

The remainder operator (%) is designed to accept Int operands. To
calculate the remainder for floating-point numbers, instead use the
function remainder(dividingBy:), for example:

let r = 15.3.remainder(dividingBy: 5.0) // r == 0.3

Unary minus Operator
Use the unary minus operator (-) before a variable or constant to return the value
multiplied by -1, for example:

let x = 3 // x == 3
let y = -x // y == -3

Compound Assignment Operators
Swift supports the compound assignment operators as a shortcut for assigning a variable
the value of itself changed with another numerical operator. For example, the following
two statements are equivalent:

x = x + 1
x += 1

Unlike C (and some C-inspired languages), Swift does not support the use of the ++ unary
operator. The following is not a Swift syntax:

x++ // Unary operator '++' cannot be applied

Comparison Operators
Swift's comparison operators are nearly identical to other C-inspired languages. We'll
summarize them and any key differences in this section.

Lesson 2

[39]

Equality
To compare whether the value of two value types are equal (for example, whether two Int
variables contain the same value), use the double-equals sign, for example:

if x == 3 {
 // do something
}

To compare whether two class instances are the same instance, use the triple-equals sign,
for example:

if obj1 === obj2 {
 // do something if the variables refer to the same object
}

Inequality
To test for inequality (rather than equality), replace the first equals sign with an exclamation
point:

Test for equality Test for inequality
== !=
=== !==

Comparison between Two Values
Swift inequality operators are straightforward, each returning a Bool type. The following
table explains each one:

Greater than >
Less than <
Greater than or equal
to

>=

Less than or equal to <=

Swift Operators and Control Flow

[40]

Ternary Conditional Operator
This operator provides a shorthand for assignments to variables that result from if…then…
else structured comparisons. For example, the following two statements are equivalent:

// conventional if..then..else
if x > 4 {
 y = 1
} else {
 y = 2
}
// ternary conditional operator
y = x > 4 ? 1 : 2

Logical Operators
Swift's logical operators follow the same conventions as other C-inspired languages. The
following logical operators are available:

NOT !
AND &&
OR ||

Local operators can be chained in a single expression, for example:

let canEnter = atDoor && doorUnlocked || haveKey

Local operators are evaluated as a chain of pairs, and are left associative, meaning that this
expression is evaluated as follows:

let canEnter = (atDoor && doorUnlocked) || haveKey

This statement as written suggests a visitor should have a key whether the door is locked
or unlocked—which is probably not what was intended. Change the order of evaluation for
logical operators using parentheses to get what we want:

let canEnter = atDoor && (doorUnlocked || haveKey)

Lesson 2

[41]

Bitwise Operators
Swift's bitwise operators also follow the same conventions as other C-inspired languages.
The following bitwise operators are available:

NOT ~
AND &
OR |
XOR ^
Left shift <<
Right shift >>

Nil-Coalescing Operator
The nil-coalescing operator is used when unwrapping an optional when a default value is
desired in the case that the optional is nil.

The following code unwraps an optional with and without nil-coalescing:

let x:Int?
let y = x // y is an optional of type Int?, and is nil
let z = x ?? 4 // z is a non-optional Int, with value 4

Range Operators
Swift range operators are unique, and many developers new to Swift have not encountered
this type of operator in other languages. Range operators are used to express a range of
values in a concise syntax.

We will use a range operator when we will introduce the for loop:

for var i in 0..<10 {
 print(i)
}

Swift Operators and Control Flow

[42]

The for loop iterates over a range of Int values (1,2,3,4,5,6,7,8,9,10), which are created
using the range operator ..<.

Range operators can be classified into three types:

•	 Closed range operator
•	 Half-open range operator
•	 One-sided range operator

Closed Range Operator
To create a range that includes the beginning and ending elements, use the closed range
operator, which is indicated by three periods (...):

let numbers = 0...10 // numbers = [0,1,2,3,4,5,6,7,8,9,10]

Half-Open Range Operator
The half-open range operator (..<) creates a range that includes the first specified element
and all values before the ending element:

let numbers = 0..<10 // numbers = [0,1,2,3,4,5,6,7,8,9]

One-Sided Range Operator
One-sided range operators are variations on the closed and half-open operators. As the
name suggests, the one-sided variants exclude one of the bounding elements, creating a
range that includes all possible values on the unbounded side of the operator:

let a = [-1,-2,-3,0,1,2,3]
let b = a[2...] // b = [-3,0,1,2,3]
let c = a[...2] // c = [-1,-2,-3]
let e = a[..<2] // d = [-1,-2]

Here, 2 refers to the position of a value in the array.

This is the end of this section. We have covered the various operators available in Swift in
detail.

Lesson 2

[43]

Activity A: Operators
Swift provides a rich set of operators you can use to manipulate and transform data within
your program. Many of the Swift operators will be familiar, while some provide powerful
modern features you may not be familiar with.

Use an Xcode playground to practice using Swift operators.

1.	 Launch Xcode, create a new playground, and save it to your desktop with the name
Operators.playground.

2.	 Add a custom class called MyString, which contains a single string object. Don't
worry that we haven't formally covered objects—we'll be covering them fully in the
next lesson! For now, know that a class is a custom type you can create that contains
variables and methods:
class MyString {
 var content = "Foo"
}

3.	 Next, create two instances of your custom class: string1, string2, and a constant
string3 assigned the value string2:
let string1 = MyString()
let string2 = MyString()
let string3 = string2

4.	 Use variables to evaluate whether the content and instances are equal to each other:
var isContentEqual = string1.content == string2.content
var isObjectEqual = string1 === string2
isObjectEqual = string2 === string3

5.	 Change the content of one of the strings, and re-evaluate whether the content and
object equality has changed:
string2.content = "Bar"
isContentEqual = string1.content == string2.content
isObjectEqual = string1 === string2

Swift Operators and Control Flow

[44]

6.	 Finally, use a for loop with a bitwise operator to print Int values containing only
one on bit (we'll cover for loops in detail in the next section):

let val = 1

for i in 1..<16 {
 print("\(val) shifted left \(i) times is \(val << i)")
}

Branching
Flow control structures enable developers to apply logical processes and make decisions
about what code is executed. Most modern programming languages provide a similar set of
flow control structures:

•	 The if statements execute code blocks when a Boolean condition is true.
•	 The while loops execute blocks of code while a Boolean condition remains true.
•	 The for loops execute blocks of code a specific number of times.

It's said that virtually any programming control flow requirement can be implemented with
a while statement alone. However, the other various control structures allow programmers
to create control flow that's more concise and clearly expresses the intent of the logical
program flow.

Indeed, Swift provides a rich and powerful set of control structures, which you'll learn
about in this section.

Lesson 2

[45]

The if Statement

The most basic flow control statement in programming is the if statement, which executes
a block of code if some Boolean expression is true. The preceding diagram is the flow chart
of the if statement. The syntax for the Swift if statement is as follows:

if {condition-list} {
 {statements}
} else {
 {statements}
}

The following code example implements an if statement:

Let age = 18
if age >= 18 {
 print("person can vote")
}

Swift Operators and Control Flow

[46]

A {condition-list} can be one or more expressions that each return a Bool data type. Any of
the following are valid for a Swift {condition}:

•	 A variable of Bool type
•	 Use of a comparison operator which returns a Bool type (for example, ==, >, >=,

and so on)
•	 The Bool constants true and false
•	 Calling a function that returns a Bool data type

Swift has several rules regarding the if statement that may be different from other
programming languages you're familiar with:

•	 Parentheses aren't added around the {boolean expression}, as they are in most
C-inspired languages

•	 The {statements} must be enclosed in curly braces—even if there is only a single
statement.

•	 Swift allows multiple {conditions} in a comma-separated list. All conditions in the
condition list must be satisfied for the code block to be executed.

Condition Lists
The Swift if statement can accept multiple, independent {condition} clauses, in a comma-
delimited fashion.

In the following code sample, the code block is executed only when the isCar and isNew
values are both true:

let isCar = true
let isNew = true

if isCar, isNew {
 print("new car")
}

Lesson 2

[47]

Swift also supports the use of logical operators when writing the
condition portion of an if statement. For example, in the previous code,
the following would be the equivalent in Swift:

if isCar && isNew {
 print('new car")
}

However, condition lists are required when using the if statement to
unwrap optional values as part of a condition, which you'll learn about in
the next section.

Optional Unwrapping with if
You'll use the if statement to unwrap optional values frequently. In fact, the if
construction will probably be the most frequent way you'll access values stored in
optionals!

We covered optionals in the previous lesson.

Unwrapping a variable with the if statement is done by embedding an assignment into a
new variable within the if statement condition list, for example:

let price:Double? = 5.99
if let p = price, p > 5.0 {
 print(p)
}

In this case, the original variable, price, is an optional. In the first clause of the condition
list, we ask the compiler to check for a value within the optional price, and if there is one,
assign it to the new constant p. Then, the second clause of the condition list tests whether
the unwrapped value is greater than 5.0, and if so, the code block is executed.

If the optional price had been nil, the comparison clause would not have been executed,
and the code block would not have executed. Program flow would have continued after the
if block.

Swift Operators and Control Flow

[48]

Incidentally, when using the if statement to unwrap a variable, it can be unwrapped into a
mutable variable if required. For example, the following code sample extracts the optional
value into the variable p, which is then modified before the print statement:

let price:Double? = 5.99
if var p = price {
 p += 1
 print(p)
}

The switch Statement
Have a look at the following diagram. It illustrates how the switch statement works:

Lesson 2

[49]

A switch statement is a powerful and flexible branching structure that most developers
will use very often in their programs. Swift's switch has powerful, flexible features that
we'll cover in detail next.

Creating a program that needs to execute different code blocks depending on the same
{Boolean expression} is a common requirement, and can be implemented with the if
statement as follows:

if personAge < 1 {
 print("baby")
} else if personAge < 3 {
 print("toddler")
} else if personAge < 5 {
 print("preschooler")
} else if personAge < 13 {
 print("gradeschooler")
} else if personAge < 18 {
 print("teen")
} else {
 print("adult")
}

The preceding code implements the requirement to print a child's life stage depending on
their current age, but repeating the condition for each case quickly becomes repetitive and
can be more prone to coding errors than a more concise switch statement.

The previous code fragment can be easily rewritten with a switch/case statement as
follows:

switch personAge {
 case 0..<1: print("baby")
 case 1..<3: print("toddler")
 case 3..<5: print("preschooler")
 case 5..<13: print("gradeschooler")
 case 13..<18: print("teen")
 default: print("adult")
}

A switch statement evaluates a single control expression, personAge, in this case, and
then executes the lines of code contained within the first matching case block.

Using the switch control structure to implement this logic results in code that's more
concise and easier to read and maintain.

Swift Operators and Control Flow

[50]

switch Statement Rules
There are a few syntax rules to note when using the Swift switch statement:

•	 The cases within a switch statement must be exhaustive. In the example above, the
special default case is included to mean "When no other case is matched, do this…."

•	 If a default case is included, it must be the last case before the switch statement's
closing brace.

•	 If the switch statement's control expression matches more than one case
expression, Swift will execute only the statements included with the first matching
case.

•	 A case must include at least one line of code. If you don't intend to execute any code
when a case is matched, add a single break keyword to inform the compiler you
intend for no code to be executed when the case is true.

•	 By default, Swift's switch statement does not support fallthrough to code in other
cases. Fallthrough is supported via the fallthrough keyword.

The switch statement goes much further, and has many powerful extensions, which we'll
review next.

The break Keyword
As mentioned above, if a case is matched that should run no code, simply include a break
statement.

The following example will print baby for ages < 1, adult for ages > 17, and print nothing
for ages 1-17:

switch personAge {
 case 0..<1: print("baby")
 case 1..<18: break
 default: print("adult")
}

The fallthrough Keyword
If a matched case should execute statements declared for the case that directly follows it,
use the fallthrough keyword.

Lesson 2

[51]

The following example will group all school age (ages 3-17) people with the teen category:

switch personAge {
 case 0..<1: print("baby")
 case 1..<3: print("toddler")
 case 3..<5: fallthrough
 case 5..<13: fallthrough
 case 13..<18: print("teen")
 default: print("adult")
}

Matching Non-Scalar Values
Unlike many other programming languages, Swift does not limit switch statements to
scalar data types. The expression provided to a switch statement can be a variable holding
a scalar (discrete) set of values—as the previous examples have been—but can also be
floating-point, string, enumerations, or any type for which you can write a valid matching
expression for each case pattern.

The following example is a valid switch statement using a Double data type as input:

switch temperature {
 case -29.0..<(-7.0): print("bitter cold")
 case -7.0..<12.0: print("cold")
 case 12.0..<20: print("warm")
 case 20..<40.0: print("hot")
 default: print("deadly")
}

Switch can also be used to match non-numeric values, such as String values:

let quarterName = "Second Quarter"
var quarterNum: Int?

switch quarterName {
 case "First Quarter": quarterNum = 1
 case "Second Quarter": quarterNum = 2
 case "Third Quarter": quarterNum = 3
 default: quarterNum = 4
}

Swift Operators and Control Flow

[52]

Multiple Patterns in a Single Case
A single case within a switch statement can match multiple patterns, as shown here:

let monthName = "February"
var quarterNum: Int?

switch monthName {
 case "January", "February", "March": quarterNum = 1
 case "April", "May", "June": quarterNum = 2
 case "July", "August", "September": quarterNum = 3
 default: quarterNum = 4
}

Using the where Statement within case
Swift provides the flexibility to add evaluation logic within a case statement. This
flexibility allows a case to be matched only when specific conditions are true.

The following switch statement branches on the relationship between two variables,
temperature and humidity:

let temperature = 21.5
let humidity = 22.0

switch (temperature, humidity) {
 case let (t,h) where t > h: print("humidity lower")
 case let (t,h) where t < h: print("humidity higher")
 default: "humidity and temperature are the same"
}

Lesson 2

[53]

Swift allows the flexibility for cases to use where in some case expressions but not in others,
for example:

let responseCode = 501

switch(responseCode) {
 case 200: print("ok")
 case let code where code >= 500: print("server error")
 default: print("Request failed for another reason")
}

Evaluating Optionals with a switch Statement
The switch statement can branch depending on whether a Swift optional is nil, and then
evaluate the value contained in a non-nil optional:

let responseCode:Int?
let error:Error?
// make a web service call, which will set responseCode or error to non-nil
switch (error, responseCode) {
 case (.none, .some(let code)) where code == 200: print("success")
 case (.some(let err), .none): print(err.localizedDescription)
 default: print("something else happened")
}

As you can see already, the switch statement in Swift is highly flexible and can meet a vast
array of use cases! In general, whenever you include multiple code branches based on the
value of a single variable (or related set of variables), consider using the switch statement
rather than constructing a series of nested if/else statements.

Swift Operators and Control Flow

[54]

Activity B: Converting Code from if to switch
The switch statement is essentially a more structured and readable way to implement a
nested if statement. It's common to refactor a nested if to a case statement to make the
code more readable and maintainable. Let's do this now.

Use an Xcode playground to convert a code with if statements to an equivalent code with
switch statements.

1.	 Launch Xcode, create a new playground, and save it to your desktop with the name
CaseRefactor.playground.

2.	 Add the following code, which uses a nested if statement to determine the country
code given a country name:
let countryName = "United States"
var countryCode = ""

if countryName == "United Kingdom" {
 countryCode = "GB"
} else if countryName == "Mexico" {
 countryCode = "MX"
} else if countryName == "Canada" {
 countryCode = "CA"
} else if countryName == "Spain" {
 countryCode = "ES"
} else if countryName == "United States" {
 countryCode = "US"
} else {
 countryCode = "??"
}
print("Country named '\(countryName)' has code \(countryCode)")

3.	 Next, let's employ an enumeration, which we learned in the last lesson, to
encapsulate the country names into a more maintainable data structure. Add the
following code underneath the print statement:
enum Countries:String {
 case uk = "United Kingdom"
 case mx = "Mexico"
 case ca = "Canada"
 case es = "Spain"
 case us = "United States"

Lesson 2

[55]

 case unknown = ""
}

4.	 Add a switch statement, which accomplishes the same logic as the nested if—but
in a more readable and structured way. Also note that because a case statement is
required to be exhaustive, it would be a compiler error to forget to add countries
included in the enumeration to the case statement:
switch Countries(rawValue: countryName) ?? .unknown {
 case .uk: countryCode = "GB"
 case .mx: countryCode = "MX"
 case .ca: countryCode = "CA"
 case .es: countryCode = "ES"
 case .us: countryCode = "US"
 case .unknown: countryCode = "??"
}

5.	 To make the conversion complete, add the original print statement below the
switch statement:

print("Country named '\(countryName)' has code \(countryCode)")

Loops
After the branching structures if and switch, the most common structures you'll use in
your programming are looping structures, which cause your program flow to execute the
same code iteratively.

The looping structures you'll learn in this section are the following:

•	 for…in, which executes the same code a predetermined number of times
•	 while and repeat…while, which executes code until a true condition becomes

false

As with the switch control structure, there are many features and flexible options
provided by these structures that make Swift more expressive and powerful than many
other programming languages.

Swift Operators and Control Flow

[56]

The for…in Statement
The following diagram illustrates how the for...in statement works:

Most programming languages have a for statement used to execute a code statement
a certain number of times. The preceding diagram illustrates how the for...in statement
works. A canonical example of a for loop in C, similar to many other C-inspired languages,
is the following:

for(int i=0; i<10; i++)
 printf("i=%d\n", i);

Lesson 2

[57]

The equivalent for loop written in Swift is as follows:

for var i in 0..<10 {
 print(i)
}

Comparing the two for loops, they appear quite similar, but you could argue the Swift
version is easier to read!

In Swift, a for…in loop always iterates over a collection of values,
rather than simply serving as a mechanism to count iterations. The range
operator used in the preceding example returns a set of Int values, which
are then iterated over.

Internally, Swift creates an Iterator, then calls the next() method of
the Iterator until next() returns nil, running the code block for each
iteration.

Iterating over Objects
Although the previous code example actually does iterate over Int values, it's effectively
running a code block a specific number of times. More often, you'll use for…in to iterate
over a collection of objects stored in your application.

The most common method to iterate over a set of objects is to use the for syntax, as in the
following example:

let strings = ["First String", "Second String", "Third String", "Fourth
String"]
for obj in strings {
 print(obj)
}

Using this syntax, the print statement within the block is executed once for each object
in the strings array. Swift implicitly creates the constant variable obj for use within the
block.

Swift Operators and Control Flow

[58]

In the previous example, the obj local variable is implicitly created as a
constant (that is, let).

While let is the default behavior, you can instruct the for loop to create
a mutable variable by specifying var in the for loop declaration, as
follows:

for var obj in strings {
 obj = "obj is: \(obj)"
 print(obj)
}

Iterating over Array Objects with index
The preceding example iterates over the strings array, providing each string to the
execution block in a local variable named obj. Sometimes, the code may need to know the
ordinal position of the object being processed. This can be accomplished by using the Array
enumerated member function of the collection being iterated:

for (index, text) in strings.enumerated() {
 print("The object at index \(index) is \(text)")
}

The for Loop where Clause
The next feature of the for loop we'll learn is using the where clause to control which
iterations are processed.

In the previous examples, the code always outputs all of the strings in the variable
strings. We might want to only output strings meeting a certain test, for example, only
strings beginning with the letter F:

One way to accomplish this requirement would be to rewrite the for loop as follows:

let strings = ["First String", "Second String", "Third String", "Fourth
String"]

for string in strings {
 if string.starts(with: "F") {
 print(string)
 }
}

Lesson 2

[59]

An even more concise way to write this code is to use the for loop's where clause, as
follows:

let strings = ["First String", "Second String", "Third String", "Fourth
String"]

for string in strings where string.starts(with: "F") {
 print(string)
}

The break Control Transfer Statement
Like most C-inspired languages, Swift supports the use of the break control transfer
statement in for loops.

The break statement has the effect of immediately transferring program flow to the
statement following the for loop, effectively skipping the remaining portion of the current
iteration, and cancelling all remaining iterations.

In the following example, the code within the for loop tests whether the current iteration's
string begins with the letter T. If so, the for loop is immediately exited:

let strings = ["First String", "Second String", "Third String", "Fourth
String"]

for string in strings {
 if string.starts(with: "T") {
 break
 }
 print(string)
}

The continue Control Transfer Statement
Swift also supports the use of the continue control transfer statement in for loops.

The continue statement has the effect of skipping the remaining portion of the current
iteration. Control then passes to the top of the for loop, where the next iteration proceeds
(if there is a next iteration available).

Swift Operators and Control Flow

[60]

In the following example, the continue control transfer statement is used to skip any
iteration having a string starting with the letter F:

let strings = ["First String", "Second String", "Third String", "Fourth
String"]

for string in strings {
 if string.starts(with: "F") {
 continue
 }
 print(string)
}

Swift provides a simple, expressive, and powerful for loop for you to use in your
programs. Key points to keep in mind regarding usage of the for loop are as follows:

•	 for always iterates over a collection of elements (and is not simply a counting
variation of the while loop as it is in some programming languages).

•	 The Swift Standard Library includes many functional programming methods that
can generate transformed object collections (for example enumerated() as we did
above). Use these methods to maintain simpler logic within your loops.

•	 for loops support the break and continue control transfer statements to provide
flow control exceptions controlled by the code block they iterate over.

Lesson 2

[61]

The while Loop

Where the for loop executes a code block a predetermined number of times, the while
loop continues executing a code block until a Boolean expression evaluates as false. The
preceding diagram illustrates how the while loop works.

The general syntax of the while loop is as follows:

while {condition-list} {
 statements
}

Swift Operators and Control Flow

[62]

The syntax rules for the while loop are essentially identical to that of the if statement,
specifically the following ones:

•	 {condition-list} can be one or more conditions, each returning a Boolean value
•	 {condition-list} can include the unwrapping of an optional value, which is then used

in the code block
•	 There are no parentheses around the {condition-list}
•	 The code block must be enclosed in curly braces

The while statement supports the break and continue keywords to redirect flow control
in the same manner as the for loop.

The following example uses a while loop to iterate over an array of Double values to
calculate an average for all prices less than seven (7):

let price:[Double] =
 [1.99, 2.99, 3.99, 4.99, 5.99, 6.99, 7.99, 8.99]
var total = 0.0
var i = 0
while i < price.count && price[i] < 7.0 {
 i += 1
 total += price[i]
}
print(total / Double(i)) // 5.49

The repeat…while Loop
Because it evaluates its condition(s) prior to the first iteration, a while loop occasionally
won't meet your needs. If you won't know whether a while loop should continue until
after the first iteration, use the repeat…while variant.

If you were developing a console application that should play a game until the user
pressed Enter without entering text, a repeat…while loop would be the ideal solution.
For example, the following Swift command-line program effectively uses repeat…while
where a while loop would be awkward:

#!/usr/bin/swift

func playGame() {
 print("simulate gameplay")
}

repeat {

Lesson 2

[63]

 playGame()
 print("enter q to quit")
} while readLine() != "q"

In most other programming languages, the Swift repeat…while
statement is called do…while. In Swift 1.0, this statement did use
the more traditional do…while name. However, when Swift added
exception handling, the do keyword was given to that feature, and
replaced with the keyword repeat.

This completes our look at the loops. Loops in Swift are important to implement the various
program flow structures you might need to develop a variety of custom applications.

Activity C: Implementing Loops
Loops and iteration are a core part of any computer program. Data is often stored in array
and collection data structures, and loops allow you to develop concise, well-organized code
to operate on them.

Use an Xcode playground to practice using the looping flow control structures we have
covered in this section.

1.	 Launch Xcode and create a new playground, then save it to your desktop with the
name Loops.playground.

2.	 Add the following declaration of a new array, which contains a list of Canadian
provinces:
let provinces = ["Ontario", "Quebec", "Nova Scotia",
 "New Brunswick", "Manitoba",
 "British Columbia", "Prince Edward Island",
 "Saskatchewan", "Alberta",
 "Newfoundland and Labrador"]

3.	 Add the following repeat…while loop to print each of the provinces to the
console:
var i = 0
repeat {
 print(provinces[i])
 i += 1
} while i < provinces.count-1
print("==============")

Swift Operators and Control Flow

[64]

4.	 Add the following while loop to print the same list of provinces to the console:
i = 0
while i < provinces.count-1 {
 print(provinces[i])
 i += 1
}
print("==============")

5.	 Add the following for loop to build a string containing the first letters of all
provinces, and then print to the console as a sorted unique set of letters:
var firstLetters = ""

for province in provinces {
 firstLetters += province.prefix(1)
}
print("Canadian provinces start with one of the following letters: \
(Set(firstLetters).sorted())")

6.	 Finally, use a for loop with enumerated to determine the array indices of all
provinces starting with the letter N:

var nProvinces = [Int]()
for (index, province) in provinces.enumerated() {
 if province.prefix(1) == "N" {
 nProvinces.append(index)
 }
}
print("The indices of provinces starting with 'N' are: \(nProvinces)")

Lesson 2

[65]

Summary
In this lesson, you've learned how to use Swift's key language:

•	 Assignment, arithmetic, and bitwise operators
•	 Comparison and range operators
•	 The Swift branching features: if and switch
•	 Loops: for, while, repeat…while

You now have the skills needed to develop robust applications using Swift's powerful
and expressive language syntax. In the next lesson, you'll learn the skills to develop
functions and classes to organize your code. You will also explore and use error handling to
efficiently handle unexpected errors in your programs.

Functions, Classes, and Structs
In the previous two lessons, you learned the fundamentals of Swift syntax, data types,
and how to use variables to store and operate on data in a Swift program. Specifically,
you learned how to use fundamental Swift elements such as operators, control structures,
variables, and built-in data types. With knowledge of these language elements, you're
already prepared to create fully functional Swift programs.

In this lesson, you'll build on these skills, and learn how to develop fully featured Swift
applications, catch unexpected errors, and begin using asynchronous programming
paradigms. You'll learn how to create your own data types, and create object-oriented
applications using classes and structs.

All object-oriented programming languages provide the ability to build your own custom
classes. Classes increase the level of modularity in your application, and promote code
reuse. This lesson will cover the key skills you'll need to build robust, object-oriented
applications with Swift.

Lesson Objectives
By the end of this lesson, you will be able to do the following:

•	 Define and call Swift functions
•	 Explain how to pass functions as parameters and argument labels
•	 Implement exception handling with do…catch and guard
•	 Use object-oriented features such as struct and class

Functions, Classes, and Structs

[68]

Functions
In the program structure section in Lesson 1, we mentioned that functions are a key part
of Swift's structure, and are units of code that can accept parameters and can return values.
In this section, we'll dive into Swift functions, learning how to implement and call them in
the course of a Swift application.

Before diving into Swift function syntax, we should summarize some key points about how
functions are used in Swift, and in modern software development generally:

•	 Functions are units of code that carry out some specific task.
•	 In terms of lines of code, functions should be short. How many lines of code is a

maximum for a function has been a topic of debate for decades. However, long
functions often do not satisfy the specific task definition.

•	 All things being equal, it's better to have a complex process broken into smaller
functions, rather than combined into a large, complex function.

•	 All things being equal, a function that references its parameters—but not global
variables—is more maintainable, less error-prone and more testable.

Defining a Function
For many developers new to Swift, its function declaration syntax may seem unfamiliar.
Swift's function syntax is probably most similar to Pascal, but also has ideas from C++,
Objective-C, and others. With some practice, Swift code will begin to feel elegant and
familiar.

The basic syntax for a Swift function that accepts parameters is as follows:

func functionName(parm1: Type1, parm2: Type2) -> ReturnType {

The basic syntax for a Swift function that accepts no parameters is as follows:

func functionName() -> ReturnType {

The basic syntax for a Swift function that accepts no parameters and returns nothing is as
follows:

func functionName() {

Lesson 3

[69]

Let's break down the syntax:

•	 The keyword func signals that what follows is a function declaration. In Swift,
there's no distinction between functions (that return a value) and procedures (which
do not)—both begin with func.

•	 Following func is the name of the function. The naming rules for functions are the
same as for Swift variables, and like variables, it's conventional to begin a function
name with a lowercase letter.

•	 If the function accepts input parameters, they are listed within parentheses. Each
parameter is followed by a colon (:) and then the data type of the parameter.

•	 If the function returns a value, the data type of the returned value is provided after
an arrow formed by the hyphen and greater than characters (->).

•	 The beginning of the code block referenced by the function name begins at the
opening brace character ({).

The following is a basic Swift function:

func printArray(array: [String]) -> Int {
 var count = 0
 for string in array {
 print(string)
 count += 1
 }
 return count
}

This function is defined with the name printArray. It accepts a single parameter—an
array of String, which it will iterate and print. Finally, it returns a single Int value, which is
the count of String values that it printed to the console.

Argument Labels
In the previous section, we created a function with a parameter named array, which is the
parameter label we used when calling the function:

printArray(array: strings)

Swift supports optional argument labels for parameters, which will be familiar to
Objective-C programmers, and likely unfamiliar to others.

Functions, Classes, and Structs

[70]

Consider the following function, which returns the concatenation of two strings:

func concatenatedNames(n1: String, n2: String) -> String {
 return "\(n1) \(n2)"
}

While using short variable names within the function is convenient, calling the function
may seem unintuitive from the point of view of the programmer calling the function:

let fullName = concatenatedNames(n1: "John", n2: "Smith")

Argument labels allow us to create a function that allows the caller of our function to refer
to the function's parameters by different names than we use within the function.

For example, we might add argument labels to the function as follows:

func concatenatedNames(firstName n1: String, lastName n2: String) -> String
{
 return "\(n1) \(n2)"
}

Adding the argument labels doesn't change the implementation of the function at all—we
still use the variable names n1 and n2 within the function. But the caller of the function
may now use the more intuitive argument labels to refer to the parameter names:

let fullName = concatenatedNames(firstName: "John", lastName: "Smith")

Excluding Argument Labels
In addition to changing the calling reference for a function's parameters, argument labels
can be used to remove names for input parameters. Doing so can make functions feel more
like calling C or Objective-C functions.

For example, consider the following function:

func addTwoInts(_ a: Int, _ b: Int) -> Int {
 return x + y
}

Lesson 3

[71]

By specifying the underscore (_) character for the argument label associated with each
parameter, the caller need not specify a parameter name. The compiler will simply match
each passed parameter to the function's passed parameter in the same order in which they
are declared:

let c = addTwoInts(4, 5) // c will be 9

While excluding parameter names is a powerful feature, it should be
used appropriately. Use this technique when the parameters passed
to a function are obvious. For example: addTwoInts(a,b), or
logMessage("Opened file"). Don't use optional parameter names
to make Swift feel more like you're using a programming language
you've used in the past. The default Swift behavior—explicitly specifying
parameter names—is intentional, and makes code easier to read,
understand and maintain.

Parameter Default Values
Like many other C-inspired languages, you can provide parameter default values for any
parameter. When a default value is specified in the function definition, the function caller
can omit the parameter—and the default value will be substituted instead.

The following function prints the temperature. It assumes the provided value is in
Centigrade units, if units are not specified:

enum TemperatureUnits : String {
 case celcius = "\u{00B0}C"
 case fahrenheit = "\u{00B0}F"
}

func printTemperature(value: Double, units: TempUnits = .celcius) {
 print("The temperature is \(value)\(units.rawValue)")
}

Because a default value is provided for units, we can omit the units when calling the
function:

printTemperature(value: 17.5) // The temperature is 17.5°C

Functions, Classes, and Structs

[72]

Activity A: Implementing a Function
In any programming language, functions are a core language element used to make
programs modular, readable, and maintainable, and virtually every program you write will
use functions extensively. Let's practice what you've learned about Swift functions.

Use an Xcode playground to implement a function that uses a variety of parameter
techniques covered until now.

1.	 Launch Xcode and create a new playground, then save it to your desktop with the
name Implement a Function.playground.

2.	 Add the following function to the playground:
func buildAddress(_ name: String, address: String, city: String, zipCode
postalCode: String, country: String? = "USA") -> String {

 return """
 \(name)
 \(address)
 \(city)
 \(postalCode)  \(country ?? "")
 """
}

3.	 Call the function within the print function twice, passing parameters as in the
following code:

print(buildAddress("John Doe", address: "5 Covington Square", city:
"Birmingham", zipCode: "01234"))
print("=====")
print(buildAddress("John Doe", address: "5 Covington Square", city:
"Birmingham", zipCode: "01234", country: nil))

An example output is given here:

 John Doe
 5 Covington Square
 Birmingham
 01234
 USA
=====
 John Doe
 5 Covington Square
 Birmingham

Lesson 3

[73]

 01234

Returning Values from Functions
Returning values from functions is largely consistent with C-inspired programming
languages you've probably used in the past. When processing is finished, a function simply
uses the return keyword to return a value to the caller. In the previous function example,
we concatenated two String variables, and returned the result using the return keyword.

The following are some Swift-specific notes regarding returning values from functions:

•	 The value returned from the function must exactly match the return data type
specified in the function definition. To avoid compile-time errors, convert or cast
values that do not exactly match the return data type.

•	 It is allowed in Swift to use the return keyword anywhere in the function. You can
return from more than one place in the function, when appropriate (such as in a
guard statement, which we'll cover shortly).

•	 To return from a function that does not specify a return value, simply use the
return keyword by itself.

•	 When a function returns no value, the return statement before the function's
closing brace is optional.

•	 If a return value type is listed in the function definition, you must return a value of
that type from every code path within the function. Failure to do so will generate a
compiler error.

•	 While Swift functions can return only one value, that value can be a tuple, which
can embed multiple other values together. For example, to return the three integers
2, 4, and 6 from a function, we can do the following:

return (2, 4, 6)

Swift can also return complex and custom types from functions. For example, your
functions can return instances of structures, instances of classes, and references to other
functions. So, while returning a single value may seem limiting, Swift actually provides
tremendous flexibility in its function return features.

Functions, Classes, and Structs

[74]

Using @discardableResult
The Swift compiler will generate a warning if you call a function that returns a result but do
not use or assign that result in your code. For example, consider the following function:

func addTwoInts(_ a: Int, _ b: Int) -> Int {
 return x + y
}

Suppose we had called it with this line of code:

addTwoInts(4, 5) // return is "discarded"

The Swift compiler doesn't understand why we would call a function that returns a value
but not use that value. While not an error, it will generate a compile-time warning.

There are times when you may implement a function that returns a value which may not
be important to the calling program. This is especially true when developing frameworks
for use by other applications—where you provide functionality that the consumer of the
framework may not feel is important to them.

For example, a log() function may return a Bool indicating how many characters of data
were written to the log—even if the callers don't consider this information interesting:

func log(_ message: String) -> Int

Suppose the caller calls this function without using the Int return value:

log("app started!")

The compiler will generate the following warning:

Result of 'log(message:) is unused

To suppress the warning, simply add the @discardableResult function attribute with the
declaration:

@disdcardableResult func log(_ message: String) -> Int

Now, knowing that you expect callers might disregard the return value, the Swift compiler
will no longer issue a warning at the point of the function call.

Lesson 3

[75]

Another way to suppress this warning is to assign the function return
value to a placeholder, for example:

_ = log("app started")

In this syntax, the underscore character (_) is effectively a local variable
with no name.

Function Attributes
In the previous section, we used the function attribute discardableResult to provide
additional information to the Swift compiler about the usage of a function we declared. In
that case, the discardableResult attribute informs the compiler that we expect callers of
a function may ignore the value returned from the function.

You may encounter and use other function attributes in the course of your Swift
programming. The following are some of the more common function attributes:

Name Description

objc

Used to generate Objective-C calling
wrappers. Used when a Swift function
you write should also be callable from an
Objective-C module.

nonobjc

Suppresses the generation of Objective-C
compatibility wrappers where it otherwise
would be created. Typically used to resolve
circular references that occasionally occur
between Swift and Objective-C modules.

available
Informs the compiler which OS versions,
Swift versions, or platforms are required for
a function to be called.

discardableResult
The return value may be ignored by function
callers without generating a compiler
warning message.

IBAction Marks a function as a call point that can be
connected to an Interface Builder design file.

Functions, Classes, and Structs

[76]

introduced The first version of the platform or language
where this function was available.

deprecated Marks a function as deprecated.

For more complete information about language attributes, refer to the Swift documentation
at https://developer.apple.com/library/content/documentation/Swift/
Conceptual/Swift_Programming_Language/Attributes.html.

Variadic Parameters
Swift supports functions with variadic parameters—these are named parameters that
accept more than one value of the same type.

For example, we could write a function to make a sentence containing a variable number of
words:

import Foundation
func makeSentence1(_ words: String...) -> String {
 var sentence = ""
 for word in words {
 sentence += "\(word) "
 }

 return "\(sentence.trimmingCharacters(in: [" "]))."
}
let sentence1 = makeSentence1("Hello", "World", "And", "Universe")

In this example, the makeSentence1 function will accept any number of words as input,
and then uses the for…in loop to combine them into a sentence.

Because Swift's array features are quite powerful, and declaring an ad hoc array of values of
the same type is quite easy, you might also approach variadic parameters in the following
way:

func makeSentence2(_ words: [String]) -> String {
 var sentence = ""
 for word in words {
 sentence += "\(word) "
 }

 return "\(sentence.trimmingCharacters(in: [" "]))."

Lesson 3

[77]

}
let sentence2 = makeSentence2(["Hello", "World", "And", "Universe"])

The output of both makeSentence1 and makeSentence2 is the same:

Hello World And Universe.

inout Parameters
In each example so far, when we've written a function that provided values back to the
point of function call, we've used function return to do so. Using the return statement to
return a new value to a function caller is the most common approach, and the approach you
should use by default.

However, using return to send data back to the function's caller returns a new value. In
some cases, it may be desirable to modify variables that are owned by the caller—rather
than return new values. Swift provides inout parameters as a way to accomplish this.

Consider the following function, which swaps two Int values without inout parameters:

func swapValues1(_ a: Int, _ b: Int) -> (Int, Int) {
 return (b, a)
}
var a = 3
var b = 2

let (a1,b1) = swapValues1(a, b)

a = a1
b = b1

print("\(a), \(b)") // 2, 3

The parameters a and b are read-only within the function, and swapValues cannot
change them. Instead, the function allocates a new tuple and returns it with the values in a
swapped order. The caller assigns these new values into the tuple (a1, b1). The caller must
then reassign the values of a and b to achieve the desired result.

Functions, Classes, and Structs

[78]

By using inout parameters, we can write a function that can modify the values of the
parameter values, and allow it to make the changes on behalf of the code in the calling
scope:

var a = 3
var b = 2
func swapValues2(_ a: inout Int, _ b: inout Int) {
 let temp = a
 a = b
 b = temp
}
swapValues2(&a, &b)
print("\(a), \(b)") // 2, 3

In the swapValues2 version, the inout keyword makes the parameters a and b read/write
variables, so the code can reassign their values.

When calling inout parameters, an ampersand (&) must be placed before the variable
being passed into the function. If you've used C or C++, you may recognize this
syntax, which in those languages means the address of. The effect is the same as in those
languages—the callee of the function is given permission to change the content of the
variable provided as a parameter.

Recursion
Like many modern programming languages, Swift supports recursive function calls.
Recursion is simply the ability for a function to call itself from within its own body.
Most canonical use cases for recursion come from computer science, for example, sorting
algorithms. However, even if you're an end user app developer, there may be times when
recursion will make your code more concise and efficient.

The following function uses recursion to calculate the mathematical factorial:

func factorialWithRecursion(n: Int) -> Int {
 return n == 0 ? 1 : n * factorialWithRecursion(n: n-1)
}

The following line calls the recursive function, assigning the result to a variable named
factorial2:

let factorial2 = factorialWithRecursion(n: 6) // 720

Lesson 3

[79]

Functions as Parameters
Many languages, including Swift, have the ability to pass in functions by reference, which
can then be called from within the called function. In many languages, the function passed
as a parameter is referred to as a callback function, since it has the effect of allowing a
function to call back to the caller's code to perform some action after the function has done
what was asked of it.

In the following example, let's rewrite the makeSentence function with a version that
passes in a callback function as a parameter:

import Foundation
func makeSentence3(_ words: [String], thenPrint: (String) -> Void) {
 var sentence = ""
 for word in words {
 sentence += "\(word) "
 }
 thenPrint("\(sentence.trimmingCharacters(in: [" "])).")
}

func printSentence(_ sentence: String) {
 print(sentence)
}

makeSentence3(["Hello", "World", "and", "Universe"], thenPrint:
printSentence(_:))

The output of this code is identical to makeSentence1 and makeSentence2 that we saw
earlier.

In the function as parameter version 3, the makeSentence3 function has no knowledge
of how the printing will be done. It simply calls the function it's provided through the
thenPrint parameter, and calls it when the sentence is finished.

The function as parameter technique is commonly used in scenarios where there may be
more than one predefined alternative ending for a program flow. In the preceding example,
we could have one printSentence routine that printed to the console, a second that
posted the result to a web service, and a third that displayed a message box.

Functions as parameters are very powerful and flexible, and are commonly used in Swift
programming. Next, we'll learn about a similar—and even more commonly used variant of
this technique: closures.

Functions, Classes, and Structs

[80]

Closures
In the previous section, you learned how to pass a named function into another function,
allowing the latter to call the former at the appropriate time.

Closures are another way to pass code to a function, which it can then call later. In the
case of closures, however, we're passing a block of code that can be called from within the
function.

The two approaches are very similar—and to some extent, interchangeable. In both cases,
the called function will run a block of code using the name specified by its own parameter
name. A closure is primarily different in that a function as parameter has a name in the
caller's scope, while a closure is an unnamed block of code.

Closures in Swift are the most common approach to providing code to execute after
asynchronous processing has completed. The following function uses a closure to
download data from the web. You'll fully implement this solution in the following activity:

func doWebRequest(closure: @escaping (_ webSiteContent: String?) -> Void) {
 let url = URL(string: "https://www.packtpub.com")!
 let urlRequest = URLRequest(url: url)
 let session = URLSession(configuration: URLSessionConfiguration.
default)

 let task = session.dataTask(with: urlRequest) {
 (data, response, error) in
 let content = String(data: data!, encoding: .utf8)
 closure(content)
 }
 task.resume()
 }

This ends our look at functions. In this section, we took a deep dive into how Swift
implements functions and the importance of functions in developing virtually any
application in Swift.

Lesson 3

[81]

Creating a Function to Receive Content from an
Asynchronous Web Service Call
For application developers who use any type of web service, processing the results of
asynchronous web service requests will be a daily requirement. Let's apply what you've
learned about writing functions to implement real-world web service requests:

1.	 Launch Xcode, and open the start project named Functions - Starter.
xcodeproj.

2.	 Add the following function to the ViewController.swift file before the closing
brace of the ViewController class:
func doWebRequest() -> String {
 var webPageContent = "No data yet!"

 let url = URL(string: "https://www.packtpub.com")!
 let urlRequest = URLRequest(url: url)
 let session = URLSession(
 configuration: URLSessionConfiguration.default)

 let task = session.dataTask(with: urlRequest) {
 (data, response, error) in
 webPageContent = String(data: data!, encoding: .utf8)!
 }
 task.resume()

 return webPageContent
}

3.	 Change the start project's startButtonTapped method to contain the following
body:
 @IBAction func startButtonTapped(_ sender: UIButton) {
 self.updateTextView(doWebRequest())
 }

4.	 Run the application with a simulator, press the Start Web Request button, and
observe the output in the TextView underneath the button.

°° What happened? Why didn't that work?
°° The doWebRequest function, as written, doesn't wait for the web request to

complete before returning the webPageContent String variable.

Functions, Classes, and Structs

[82]

5.	 Replace the doWebRequest function with the following implementation:
 func doWebRequest(closure: @escaping (_ webSiteContent: String?)
-> Void) {
 let url = URL(string: "https://www.packtpub.com")!
 let urlRequest = URLRequest(url: url)
 let session = URLSession(configuration: URLSessionConfiguration.
default)

 let task = session.dataTask(with: urlRequest) {
 (data, response, error) in
 let content = String(data: data!, encoding: .utf8)
 closure(content)
 }
 task.resume()
 }

°° This function accepts a closure parameter (named closure). In this
implementation, the function doWebRequest has no return value. Instead,
it waits until the web request has completed, and then returns the HTML
response by calling the closure function, passing the HTML to the closure
as a parameter value.

6.	 Modify the startButtonTapped function as follows, so that it calls the new
doWebRequest version, which accepts a closure parameter:
 @IBAction func startButtonTapped(_ sender: UIButton) {
 doWebRequest { (content) in
 self.updateTextView(content!)
 }
 }

7.	 Run the application on a simulator, press the Start Web Request button, and
observe the output in the debug console. You should now see the HTML source for
the web page assigned to the url variable.

Assuming you encountered no exceptions or web connectivity problems, the program
you coded for the web request activity will have worked just fine. But it lacks any error
handling and is not up to scratch to include in a production application!

Open the project in the Functions – Finished with Error Handling folder, and
review it. Then, ask yourself what steps have been taken to ensure this code will not crash
the application when external data is not returned as expected.

Lesson 3

[83]

Error Handling
We ended the last section by examining some sample code after it had been made
production-quality by adding correct error handling techniques. In this section, we'll dig
into the most common Swift error handling techniques, which will help ensure all the code
you develop in Swift will be robust and of high quality.

Swift supports many of the same error handling techniques available in other object-
oriented languages, such as C++, Java, and C#. Functions—either your own or standard
library functions—often return error codes as integers, error types, and Boolean variables.
In addition, Swift provides exception handling using the do…catch construction, which is
functionally equivalent to the try…catch construction used in many other languages.

The do…catch Statement
Most modern languages have exception handling features that allow code to throw
exceptions from an inner scope that can be caught in an outer scope. In Swift, this pattern is
implemented using the do…catch structure.

You'll very often use the Swift do…catch structure when calling underlying Apple
frameworks to do data processing or file access work on your behalf. Catching exceptions
can help bubble up highly detailed error information to your code.

The following code declares a block that calls a function decode, which may throw an
exception of type Error:

do {
 let userObject = try decode()
 print(userObject.name)
} catch let error {
 print(error)
}

The important thing to note is that the code in between do and catch doesn't explicitly
check for an error. It simply instructs the decode function to try to complete successfully.
In the event that decode encounters an error, the remainder of the do block will be skipped
and the catch block will receive the thrown Error object, assigning it to the local variable
error.

Functions, Classes, and Structs

[84]

Multiple catch Blocks
In practice, a function that throws an exception may throw one of several more specific
exceptions, depending on what went wrong.

The do…catch construction allows you to catch more than one exception type. This works
almost identically to constructing a switch statement with multiple case code blocks.

Multiple catch blocks provide the program with more specific information about the cause
of the decoding error, if available, for example:

func decodeWithException() {
 if let data = jsonText.data(using: String.Encoding.utf8) {
 let decoder = JSONDecoder()

 do {
 let userObject = try decoder.decode(UserInfo.self,
 from: data)
 print("User decoded form JSON: \(userObject)")
 } catch let DecodingError.typeMismatch(_, context) {
 print("Type Mismatch Error: \(context.debugDescription)")
 } catch let DecodingError.dataCorrupted(context) {
 print("Decoding Error: \(context.debugDescription)")
 } catch let error {
 print(error.localizedDescription)
 }

 print("program always continues from this point.")
 }
}

Lesson 3

[85]

Using do without catch
What if you didn't want to catch an exception, but wanted your program to continue even
when an exception is thrown?

By using the try? keyword (that is, try with a question mark after it), we can ask Swift to
try to run code that may throw an exception, and return the result as an optional variable.
In this case, if an exception is thrown, the returned optional will be nil; if no exception
is thrown, the optional will contain the value the function would normally return, for
example:

do {
 let userObject = try? decode()
 print(userObject?.name)
}

In this case, if the decode function throws an exception, the userObject optional will
be nil, and the print(userObject.name) line will not be executed. Because the action
taken if an exception is thrown is to assign nil to the variable on the left-hand side of the
equal sign, it's no longer necessary to wrap the decode call in the do…catch block.

The guard Statement
The guard statement is most commonly used at the top of a function body to validate that
the data the function will use to complete its task is in an expected state. In this sense, the
guard statement acts as a guard at the gate—checking the contents of inputs to the function
before they're allowed in.

Functions, Classes, and Structs

[86]

In early versions of Swift, we didn't have the guard statement, and it was common to
implement functions structured like the following:

func printAddress1(zipCode: String?,
 countryCode: String?, areaCode: String?) -> Bool {
 if let zip = zipCode, let country = countryCode,
 let area = areaCode {
 if zip.count != 5 {
 return
 }
 if country.count != 2 {
 return
 }
 if area.count != 3 {
 return
 }
 print("\(zip), \(country), \(area)")
 }
}

While this function isn't too difficult to follow, it can become confusing for the reader where
the ending brace of the if let { } block ends. Developers would frequently reduce the
editor font to a tiny size to try to make out where in the sequence of ending braces the close
of the original error checking if let block ended!

The guard keyword is effectively a clearer version of this structure—moving the closing
braces of validations together in neat code blocks. An equivalent function using the guard
syntax is as follows:

func printAddress(zipCode: String?,
 countryCode: String?, areaCode: String?) {
 guard let zip = zipCode, zip.count == 5 else { return }

 guard let country = countryCode,
 country.count == 2 else { return }

 guard let area = areaCode, area.count == 3 else { return }

 print("\(zip), \(country), \(area)")

}

Lesson 3

[87]

In the second version, the guard statement makes the code more readable, and moves all
the state-checking code to the beginning of the function where it can be easily reviewed and
understood.

We have reached the end of this section. Here, we focused on error handling and exception
handling, as implemented in Swift. To reiterate, Swift uses do…catch instead of try…catch
and also allows us to use multiple catch blocks.

Activity B: Exception Handling
Exception handling, as the name implies, is an error handling technique that enables you
to let the Swift compiler know what errors you expect, and provide a way to listen for them
if they occur while your program is running. We'll now apply exception handling in one of
the most common use cases for application developers—parsing data structures from JSON
into application data structures.

Use an Xcode playground to practice catching an exception while parsing a JSON string
into a custom data structure—a very common task in any application development work
that involves integration with web services.

1.	 Launch Xcode and create a new playground, then save it to your desktop with the
name ExceptionHandling.playground.

2.	 Add the following import to the top of the playground file:
import Foundation

3.	 Add the following code to define a data structure that holds basic user information
for an application:
 struct UserInfo : Codable {
 var name: String
 var email: String
 var userId: String
 }

Functions, Classes, and Structs

[88]

4.	 Now add the following decodeJson function to decode a JSON string:
func decodeJson(jsonText: String) {
 if let data = jsonText.data(using: String.Encoding.utf8) {
 let decoder = JSONDecoder()

 do {
 let userObject =
 try decoder.decode(UserInfo.self, from: data)

 print("User decoded form JSON: \(userObject)")
 } catch let error {
 print(error.localizedDescription)
 }
 }
 print("program always continues from this point.")
}

5.	 Add the following statement to call the decodeJson function with a data string
that almost correctly matches the expected data structure keys (the name field has
the wrong case):
decodeJson(jsonText : "{ \"Name\" : \"John Smith\", \"email\" : \"john@
smith.com\", \"userId\" : \"jsmith\"}")

6.	 Observe the exception printed to the debug console.
7.	 Modify the string to correct the uppercase letter in the name field, and observe that

the properly encoded JSON object is printed in the console.

Because the jsonText data is not in the correct format (the name field cannot begin with
an uppercase letter), the decoder.decode function throws an exception. The exception is
caught in the catch block, reporting an error. You eliminate the exception by changing the
case of the name field in the jsonText string.

Object-Oriented Features
Throughout the past couple of lessons, we've been learning how to use Swift syntax,
variables, functions, and control flow structures to develop the building blocks of Swift
applications. In the final section of this lesson, we'll learn how to pull all those language
components together into Swift's object-oriented classes and structures—the high-level
building blocks of most professional Swift applications.

Lesson 3

[89]

Object-Oriented Principles
Swift is an object-oriented programming language, and enables the core principles of
object-oriented programming. Generally speaking, in object-oriented programming,
variables, functions and data structures that implement a functional unit of your program
are combined into an object that exists within its own namespace, and is accessed by other
objects through filtered, publicly exposed interfaces.

Using Swift, instances are created using both structs and classes. Structs and classes
support encapsulation and abstraction, though only classes support inheritance. Both object
types—structs and classes—are frequently used in Swift, and neither is better than the other
for all use cases.

Classes Versus Structs
Virtually all object-oriented languages are based on the concept of organizing units of code
into classes that perform a very specific set of actions on a specific set of data.

Illustration
A class can be thought of as a pattern, such as one a clothes factory might place over a bolt
of fabric to cut a new shirt. The pattern (class) has all the dimensions and notations that
describe to the tailor what shape the shirt will take. The tailor can use the pattern to create
as many shirts as they need—each one perfectly formed by placing the pattern on the raw
fabric and cutting around the pattern. Here, the tailor is the Swift runtime, the pattern is the
class (or struct) designed by the programmer, and the finished shirt is an object generated
by the Swift runtime environment.

While this section isn't a comprehensive tutorial on object-oriented programming, some
general guidelines for selecting between classes and structs are the following:

•	 Structs are value types, which are always copied when passed between objects or
assigned to variables. This makes them ideal to use when creating objects that are
primarily used to store data structures (though structs can and do include functions
that operate on their data).

•	 Classes support inheritance, which makes them the only alternative when defining
objects that will serve as base classes or be derived from base classes.

•	 Classes, as reference types, are also a better choice when it's advantageous to pass
an object by reference, allowing its members to be directly modified by functions it's
passed to (this is somewhat similar to the inout parameter distinction we learned
earlier in this lesson).

Functions, Classes, and Structs

[90]

Defining Classes and Structures
In this lesson, we'll focus on the syntax to define, instantiate, and use your own structs and
classes. These techniques are nearly the same for each object type.

A class or struct is defined with the following syntax:

•	 The struct or class keyword defines a namespace for the class. This namespace
is prepended to any symbol definition within the scope of the struct or class when
your application is assembled.

•	 The definition of struct or class members is enclosed in braces ({…}).
•	 If a class or struct contains member variables that are not assigned default values

where defined, an initializer must be provided so the uninitialized member
variables can be assigned a value. For structs (but not for classes), the Swift
compiler will create an initializer for you.

•	 Within the definition braces, variables and functions can be added, according to the
techniques learned in the last couple of lessons.

•	 Classes, structs, and their enclosed methods and variables can be given specific
access levels, which control how visible they will be from outside modules. The
default access level is Internal, which makes all elements visible to any code in
the same module.

The following are declarations for a Customer object—the first declared as a struct and the
second as a class:

struct Customer {
 var name: String
 var customerNumber: String
}

class Customer {
 var name: String
 var customerNumber: String
}

Throughout the last couple of lessons, you've been using structs and classes, for example:

•	 The String type is a struct that contains many properties and functions—for
example, the .count property we often used to count the characters contained in a
string.

•	 We used the JSONDecoder class to decode the JSON text in Activity B.

Lesson 3

[91]

As you develop applications with Swift, you'll use classes and structs frequently, and will
often define your own.

Next, you'll solidify your understanding of basic struct and class usage by practicing the
creation of each type of object in an activity.

Activity C: Creating a Customer Struct and Class
To compare the differences (and similarities) between Swift classes and structs, it's useful to
implement the same data structure in both. This is exactly what we'll do now.

Use an Xcode playground to practice how to create Swift structs and classes.

1.	 Launch Xcode and create a new playground, then save it to your desktop with the
name CustomerStructClass.playground.

2.	 Add the following lines of code to declare a new Customer struct:
struct CustomerStruct {
}

3.	 Below the closing brace of the struct definition, create a new variable of type
Customer. Congratulations! You've created a struct definition, and instantiated
your first custom object!
var customer1 = CustomerStruct()

4.	 Modify the code to the following, adding the enum CustomerType and variable
type to the struct. Then modify your code to print the current customer.type to
the debug console:
struct CustomerStruct {
 enum CustomerType: String {
 case gold = "Gold Customer!"
 case silver = "Silver Customer!"
 case unknown = "Unknown customer type"
 }

 var type: CustomerType?
}

var customer1 = CustomerStruct()

print(customer1.type ?? "invalid customer type")

Functions, Classes, and Structs

[92]

°° At this point, the print statement prints invalid customer type, because
the member variable within the struct is initialized to an optional having a
nil value.

5.	 Because this is a struct, Swift has auto-created an initializer we can use to set an
initial value for the customer value. Modify the instantiation of the customer
variable as follows:
var customer = CustomerStruct(type: .gold)

°° Now when the code runs, the output is the string gold.

6.	 Creating a similar data structure as a class is quite similar. Add the following class
definition to your playground:
class CustomerClass {
 enum CustomerType: String {
 case gold = "Gold Customer!"
 case silver = "Silver Customer!"
 case unknown = "Unknown customer type"
 }

 var type: CustomerType?

 init(type:CustomerType) {
 self.type = type
 }
}

°° This definition declares a class of type CustomerClass. Because Swift does
not automatically create initializers for classes, CustomerClass includes an
initializer to allow its CustomerType variable to be set on instantiation—
just as the automatically created struct initializer does for CustomerStruct.

7.	 Finally, add the following two lines to the playground to instantiate an object of
type CustomerClass, and print its type enum member to the debug console:

var customer2 = CustomerClass(type: .silver)
print(customer2.type ?? "invalid customer type")

Lesson 3

[93]

Summary
In the last couple of lessons, you've learned all the key building blocks needed to build
feature-rich, robust Swift programs:

•	 In Lesson 1, Swift Basics, you learned key language basics: using variables,
optionals, data types, and essential Swift code syntax

•	 In Lesson 2, Swift Operators and Control Flow, you learned the fundamental
structures you need to build logic and express the core flow of your application:
control flow, looping structures, and the range of operators Swift supports

•	 In this lesson, you began taking your Swift skills to the next level by creating
functions, handling exceptions, and defining your own data types using struct and
class language features

In the next couple of lessons, you'll continue to build your Swift knowledge by learning
more advanced language concepts, including the following:

•	 Using and extending Swift collections
•	 Swift's sophisticated and powerful Unicode String structure and protocols
•	 Using Swift's functional programming and lazy operations features

Challenge
We'll tie together a variety of Swift language techniques, giving you additional practice to
create structs, functions, data types, and optionals, and use flow control structures.

To solidify your understanding of basic struct and class usage by practicing the creation of
each type of object.

1.	 Launch Xcode, and create a new playground, then save it to your desktop with the
name Activity 5 - Final Activity.playground.

2.	 Add the following enum, which will be used to classify customers by gold, silver,
and platinum levels. Note that this enum has a rawValue of type String, which we
will use while printing customer information:
enum CustomerType:String {
 case silver = "SILVER"
 case gold = "GOLD"
 case platinum = "PLATINUM"
}

Functions, Classes, and Structs

[94]

3.	 Create a new Customer struct with a set of String variables, including an optional
for country and the variable type to classify the customer into one of the
CustomerType categories:
struct Customer {
 var name: String
 var address: String
 var city: String
 var state: String
 var country: String?
 var type: CustomerType
}

4.	 Within the Customer struct, add an enum OutputType to control customer
printing output style as either a formatted label, a debug output, or both. This enum
has no rawValue:
enum OutputType {
 case label, debug, both
}

5.	 Add a function printAddress to the Customer struct that can be called to print
customer address information in a variety of styles. This function returns a result,
but includes the @discardableResult annotation so that callers who do not store
its return value won't generate a compiler warning. This function also allows (but
does not require) additional text lines to be appended to the end of the address label
output via a variadic parameter:
@discardableResult func printAddress(outputType: OutputType = .label,
additionalLines: String?...) -> OutputType {

 switch outputType {
 case .both:
 printDebug()
 fallthrough
 case .label:
 printLabel(additionalLines)
 case .debug:
 printDebug()
 }

 return outputType
}

Lesson 3

[95]

6.	 Add a function printLabel to the Customer struct that creates a formatted string
and prints it to the console. Note that this function is declared as private so that it
can be called only from other functions in the Customer class (forcing callers to go
through the printAddress function to print label data). This function also accepts
an array of optional strings:
private func printLabel(_ additionalLines: [String?]) {
 var addressString = """
 \(type.rawValue)
 \(name)
 \(address)
 \(city), \(state)
 """

 if let countryText = country {
 addressString += "\n\(countryText)"
 }
 for line in additionalLines {
 if let line = line {
 // "line" and "line" have the same name, but exist in
different scopes.
 // The inner 'line' variable is a non-Optional, scoped
within this block,
 //and is created only when the Optional 'line' variable
created by the for statement is not nil
 addressString += "\n\(line)"
 }
 }

 print(addressString)
}

7.	 Add a function printDebug to the Customer class to print a simple output string
to the console. This function will be called when the printAddress function is
called with either the .debug or .both style parameters:
private func printDebug() {
 print(self)
}

Functions, Classes, and Structs

[96]

8.	 Add a function customerTuple to return customer information as a tuple
containing six unnamed members:
func customerTuple() -> (String, String, String, String, String?,
String) {
 return (name, address, city, state, country, type.rawValue)
}

9.	 Now create two Customer objects, customer1 and customer2, with different
address information:
let customer1 = Customer(name: "John Doe", address: "100 First Street",
city: "Springfield", state: "Indiana", country: "USA", type: .platinum)

let customer2 = Customer(name: "Jane Doe", address: "57 Morgan Circle",
city: "Las Vegas", state: "Nevada", country: "USA", type: .silver)

10.	 Create a constant variable tuple, and assign it the return of the customerTuple
function:
let tuple = customer1.customerTuple()

11.	 Print the first and third members of the tuple (customer name and address):
print("Customer named ", tuple.0, " lives in ", tuple.2)

12.	 Call the printAddress function on the customer2 object, directing the function to
print a formatted label with two additional lines under the address:
customer2.printAddress(outputType: .label, additionalLines: "C/O Sam
Johnson", "Forwarding Requested")

13.	 Call the printAddress function on the customer2 object, this time passing the
.debug style parameter, and no additional lines:
customer2.printAddress(outputType: .debug)

14.	 Finally, call the printAddress function on the customer1 object, this time passing
the .both style parameter. The printAddress function's switch statement will
use the fallthrough instruction to print both versions of the address output:

customer1.printAddress(outputType: .both)

Collections
In the previous lesson, we looked into building Swift functions, error handling, and
developing fully-featured Swift programs. We also briefly looked at a few OOP features.

In this lesson, we will work extensively with Swift's collections, such as arrays, sets, and
dictionaries.

The Swift Standard Library (https://developer.apple.com/documentation/swift)
is automatically imported into all Swift code, and contains basic types such as Int,
Double, Bool, Optional, and more. It is primarily organized around protocols, because
Swift is a Protocol-Oriented language (https://developer.apple.com/videos/play/
wwdc2015/408/).

The root protocol for collections, which they all inherit from, is Sequence. All a type needs
to conform to it is the ability to provide one value at a time, until it is empty, at which point
it will output nil. This simple requirement provides a long list of methods (https://
developer.apple.com/documentation/swift/sequence#topics), and lets you iterate
over the type with a for…in loop:

for element in somesequence {
 // do something with 'element'
}

Collection (https://developer.apple.com/documentation/swift/collection) inherits
from Sequence, and adds the ability to refer to a specific position in the collection with an
index. You can only go forwards from an index, until you reach the end. Unlike Sequence,
it guarantees that you can iterate over it multiple times. In other words, it preserves its
contents, whereas a Sequence may forget each value as soon as it has provided it:

Collections

[98]

It is worth noting that, like practically everything else in the Standard Library,
all of the collections are value types (https://developer.apple.com/library/
content/documentation/Swift/Conceptual/Swift_Programming_Language/
ClassesAndStructures.html#//apple_ref/doc/uid/TP40014097-CH13-ID88). That
means they are not reference types (pointers), like classes, so no two identifiers ever refer to
the same value.

Lesson Objectives
By the end of this lesson, you will be able to do the following:

•	 Implement the main collections in the Swift Standard Library: arrays, sets, and
dictionaries

•	 Explain sequences, collections, and other useful protocols
•	 Create extensions of the standard library, as well as new types

Lesson 4

[99]

Arrays
An array is an ordered collection of elements of the same type, and they are used for pretty
much anything that requires storing things in a certain order, such as the contents of lists in
apps. It works like similar types in other languages.

Working with Arrays
Follow these steps to work with arrays:

1.	 We can create an array like this:
let a = [0,1,2,3,4] // array literal

2.	 We can join two arrays like this:
var b = a + [5,6] // join two arrays

3.	 We can have a repeated value like this:
let c = Array(repeating: 4.1, count: 3) // repeat one value

4.	 To create an array from any sequence, we can do this:
// create from any Sequence (a String is a Sequence of Character)
var d = Array("The ☀ and 🌙 ")

5.	 To append a value to an array, use this:
b.append(10) // append one element

6.	 To append an entire array, use this:
b += a // append an array

Another way to append an array is by using this:

b.append(contentsOf: a) // append an array

7.	 To count the length of an array, we can do this:
b.count // the length of the array

Collections

[100]

8.	 To assign a value in the array, we can do this:

b[0] // 0
b[0] = 9
b[0] // 9
for nr in b {
 // do something with 'nr'
}

Here are their abilities, represented by some of the protocols they conform to:

•	 A BidirectionalCollection can go backwards from any index (except for the
first one).

•	 A MutableCollection can replace any element with a different one, but can't
necessarily change the length of the collection.

•	 A RangeReplaceableCollection can add and remove elements. You can also
create an empty one.

Lesson 4

[101]

•	 RandomAccessCollection does not offer any new methods over
BidirectionalCollection, but it guarantees that accessing any part of the
collection takes the same amount of time, no matter how big it is. Array can do this
because all of its elements are the same size, so it can instantly calculate where they
are in memory.

Index
The index type of an Array is Int (integer), and its startIndex is always 0. Its endIndex is
the same as the length of the array. You can think of an index as something that's pointing
to the space between elements, right before the element it refers to. Here is an array of
characters:

var characters = Array("The ☀ and 🌙")

endIndex points to the position after the end, so if you ever try to access an element at
endIndex with characters[characters.endIndex] (or with any other invalid index),
your program will crash. If an array is empty, startIndex and endIndex are both 0.

Collections

[102]

Utilizing Common Operations with Index
Common operations which are used with index are shown here:

1.	 To read an element at a particular index, use this:
characters[2] // read element at index 2 ("e")

2.	 To change the element at a particular index, use this:
characters[2] = "a" // change element at index 2

3.	 To remove and return an element at a particular index, use this:
let removed = characters.remove(at: 8) // remove and return element

4.	 To insert an element at a particular index, use this:
characters.insert("i", at: 7) // insert element

5.	 To insert a collection of elements at a particular index, use this:
characters.insert(contentsOf: "t the", at: 9) // insert collection of
elements

6.	 To print all of the characters, use this:

print(characters)
// ["T", "h", "a", " ", "☀", " ", "a", "i", "n", "t", " ", "t", "h",
"e", " ", " 🌙 "]

Many collections use their own custom index type instead of Int,
and even those that use Int do not necessarily have a startIndex
that is always 0. It is therefore recommended to always use an array's
startIndex instead of 0. This also makes the code clearer.

Lesson 4

[103]

As with all indices, note that they may become invalid or point to the wrong element if the
Array is mutated after they are created. To check if an index can still be used, all collections
have an indices property, which is a collection of all the current indices:

characters.indices.contains(index)

ArraySlice
All sequences have a SubSequence, a type which represents a subrange of its elements. The
Array.SubSequence is an ArraySlice:

Collections

[104]

It has the same heritage and API as Array. It keeps a reference to the array it was created
from, and its startIndex and endIndex represent the subrange within the array:

let characters = Array("The ☀ and 🌙 ")
let slice = characters[4..<9]
print(slice) // ["☀", " ", "a", "n", "d"]

This allows us to have just one copy of a big array in memory, and have as many slices as
there are views on it. However, each slice holds on to the array, so if you want to keep a
slice around for a while, it is recommended to convert it to an array (using Array(slice)).
This will copy the elements of the slice to its own array and release the reference, allowing
the big array to be freed if nothing else holds on to it.

If you mutate the array or the slice after the slice has been created, a copy will be made
automatically and the change will not be reflected in the other.

Lesson 4

[105]

Creating Slices
Slices can be created in different ways, as shown here:

1.	 To create a slice with the first three elements, use this:
characters.prefix(3) // the first three elements

2.	 To create a slice with all the elements before the first space, use this:
characters.prefix(while: {$0 != " "}) // all elements before the first
space

3.	 To create a slice with the last two elements, use this:
characters.suffix(2) // the last two elements

4.	 To create a slice with elements from 4, use this:

characters.suffix(from: 4) // elements from number 4 and out

Creating Slices Using Range Operators
We will now see how to use range operators to create slices:

1.	 To create a slice from elements 2 to 4 inclusive, use this:
characters[2...4] // elements 2 to 4 inclusive

2.	 To create a slice from element 3 up to, but not including 6, use this:
characters[3..<6] // elements 3 up to, but not including 6

3.	 To create a slice from element 3 to the end, use this:
characters[3...] // from element 3 to the end

4.	 To create a slice from the beginning up to and including element 5, use this:
characters[...5] // from the beginning up to and including 5

5.	 To create a slice from the beginning up to but not including element 5, use this:

characters[..<5] // from the beginning up to, but not including 5

That ends our look at arrays. Next, we'll work through an activity that solidifies our
understanding of arrays and its related concepts.

Collections

[106]

Activity A: Working with Arrays
Many operations on arrays can be done far more efficiently if the array is sorted. We will
add methods that take advantage of this for insertion, finding the index of the first or last
occurrence of an element, and checking if the array contains an element.

We will just add methods to an array in an extension, but ideally this should be its own
type with an internal array so that we can guarantee that it is always sorted. Check out
ole/SortedArray (https://github.com/ole/SortedArray) for an example of this.

To perform basic array operations such as, inserting elements into an array and searching
an element in an array.

1.	 Open the CollectionsExtra Xcode project, and go to SortedArray.swift.
2.	 Create an extension to Range to find the middle of it. This will be used with the

indices of the array:
public extension Range where Bound == Int {
 /// The value in the middle of this range. Returns nil if the range is
empty.
 var middle: Int? {
 guard !isEmpty else { return nil }
 return lowerBound + count / 2
 }
}

3.	 We will assume that the array has been sorted using the < operator (ascending),
and we will assure that elements can be used with this operator by constraining the
extension to arrays with elements that adopt the Comparable protocol. This also
means they can be used with >, ==, !=, >=, and <=:
extension Array where Element: Comparable {

4.	 Next, we need to find the insertion point if we were to insert an element into the
sorted array. We can use this for insertion and checking if the array contains a
specific element. This is a standard binary search, implemented with recursion:
 /// The index to use if you were to insert this element into a sorted
array.
 ///
 /// - Parameters:
 /// - element: The element to potentially insert.
 /// - range: The range to search in.
 /// - Note: If the element already occurs once or more, the index to
one of those will be returned.

Lesson 4

[107]

 func insertionIndex(for element: Element, in range: Range<Index>) ->
Index {
 guard let middle = range.middle else { return range.upperBound }
 if self[middle] < element {
 return insertionIndex(for: element, in: index(after:
middle)..<range.upperBound)
 } else if self[middle] > element {
 return insertionIndex(for: element, in: range.lowerBound..<middle)
 }
 return middle
 }

Note that when returning middle, we do not check if the element in that position is
the one we are searching for. This is because the Comparable protocol demands that
if an element is neither bigger than or smaller than another element, then they must
be equal.
The range will normally start as the entire array.

5.	 Inserting an element is now very simple:
 /// Inserts the element in the correct position in a sorted array.
 ///
 /// - Parameter element: The element to insert.
 /// - Returns: The index where the element was inserted.
 @discardableResult
 public mutating func sorted_insert(_ element: Element) -> Index {
 let index = insertionIndex(for: element, in: startIndex..<endIndex)
 self.insert(element, at: index)
 return index
 }

6.	 When checking if the array contains a specific element, we can first get the insertion
index, check that it is not the endIndex (if the element does not exist and is larger
than all the other elements), and see if the element at the index is the one we are
searching for:
 /// Checks if a sorted array contains an element.
 public func sorted_contains(_ element: Element) -> Bool {
 let index = insertionIndex(for: element, in: startIndex..<endIndex)
 return (index != endIndex) && (self[index] == element)
 }

Collections

[108]

7.	 When searching for the first occurrence of an element in the array, we can't use
insertionIndex. This is because if the element occurs more than once, it may
return the index to any of those occurrences. Instead, we will use a slightly
modified version (https://github.com/raywenderlich/swift-algorithm-
club/blob/master/Count%20Occurrences/README.markdown):
 /// The index of the first occurrence of this element in a sorted
array.
 ///
 /// - Parameters:
 /// - element: The element to search for.
 /// - range: The range to search within.
 /// - Returns: The index, or nil if not found.
 public func sorted_index(of element: Element, in range: Range<Index>?
= nil) -> Index? {
 let range = range ?? startIndex..<endIndex
 guard let middle = range.middle else {
 let index = range.upperBound
 return (self.indices.contains(index) && self[index] == element) ?
index : nil
 }
 if self[middle] < element {
 return sorted_index(of: element, in: index(after: middle)..<range.
upperBound)
 }
 return sorted_index(of: element, in: range.lowerBound..<middle)
 }

The main difference is that we only check if the element in the middle is less
than what we are searching for, not both less than and greater than, like in
insertionIndex. We can do this because, in a sorted array, all equal elements are
grouped together. Even if middle happens to point to an equal element, there may
still be more of those to the left, so we continue searching there. If there aren't, we
still end up with the index in the correct place.
Since we are using properties of self for the default value of the range parameter,
we cannot provide them in the function header. Instead, we set the default value
to nil, and then create a new local variable called range which is set to the default
value startIndex..<endIndex if no other value was provided when the function
was called.

8.	 The code for finding the last index of an element is almost identical:
 /// The index of the last occurrence of this element in a sorted
array.

Lesson 4

[109]

 ///
 /// - Parameters:
 /// - element: The element to search for.
 /// - range: The range to search within.
 /// - Returns: The index, or nil if not found.
 public func sorted_lastIndex(of element: Element, in range:
Range<Index>? = nil) -> Index? {
 let range = range ?? startIndex..<endIndex
 guard let middle = range.middle else {
 let index = self.index(before: range.upperBound)
 return (self.indices.contains(index) && self[index] == element) ?
index : nil
 }
 if self[middle] > element {
 return sorted_lastIndex(of: element, in: range.
lowerBound..<middle)
 }
 return sorted_lastIndex(of: element, in: index(after:
middle)..<range.upperBound)
 }
}

Here, we check if middle points to an element that is greater than what we are
searching for. If it isn't, we go to the right. When we have finally found an index, we
use the index before it.

9.	 Go to SortedArrayTests.swift, uncomment the unit tests, and run them all.

Sets
A set is an unordered collection of unique elements. It can very efficiently add, remove,
or check if it contains a specific element (on average O(1), meaning it takes the same time
regardless of the size of the set), in contrast to an unsorted array, where these operations
take O(n) (the array may need to access and/or move most of its element).

Sets can be used for tracking which part of a custom view should be hidden, like which
parts of an outline view are collapsed. When displaying the view, you would only show
the children of those nodes which are not in the collapsed set. So, you are in a sense adding
a Bool property to types you do not control. Sets can also be used for removing duplicates;
you just add a sequence to an empty set and all duplicates will be gone.

Collections

[110]

Have a look at the following diagram to get a view on sets:

•	 Equatable means you can check if instances are equal with a == b or not
equal with a != b. Each type defines for itself what equal means, and it doesn't
necessarily mean identical.

•	 Hashable types have an integer property hashValue, which dictionaries and sets
(among others) use to quickly find instances. Values that are equal always have the
same hashValue.

•	 SetAlgebra has some mathematical set operations such as intersection, union, and
subtraction.

A Set is a Collection which has its own index type, but since Set is
unordered, we hardly ever have a need for it.

Lesson 4

[111]

All types used in a set have to conform to the Hashable protocol:

A lot of other types conform to Hashable as well (https://developer.apple.com/
documentation/swift/hashable#adopted-by).

Collections

[112]

Working with Sets
Let's look at working with sets by following these steps:

1.	 To create a set, we can do this:
var numbers: Set = [0,1,2,3,10,2.75,-3,-3.125,-14]

2.	 We can then print it like this:
// order is not preserved
print(numbers) // [-3.125, 10.0, 2.75, 2.0, -3.0, 3.0, -14.0, 0.0, 1.0]

3.	 To insert a value if nothing equal is already there, we can do this:
// insert if nothing equal is already there
numbers.insert(4)

4.	 To insert a value and replace it if something equal is already there, we can do this:
// insert, and replace it if something equal is already there
numbers.update(with: 4)

5.	 Here are some more common operations with sets:

numbers.remove(4)
numbers.contains(3)
numbers.isEmpty

for n in numbers {
 // ...
}

Combining Sets
Have a look at the following code:

extension Double {
 var isInteger: Bool { return self.truncatingRemainder(dividingBy: 1) == 0
}
}

let negativenumbers = numbers.filter { $0 < 0 }
let positivenumbers = numbers.subtracting(negativenumbers.union([0]))

let integers = numbers.filter { $0.isInteger }

Lesson 4

[113]

let negativeintegers = integers.intersection(negativenumbers)
print(negativeintegers) // [-3.0, -14.0]

Here's what this code does:

•	 union combines two sets
•	 intersection returns the elements both sets have in common
•	 symmetricDifference returns elements that are in either of the two sets, but not in

both
•	 subtracting returns elements of the first set that do not occur in the second set

All of these have mutating versions that change the first set in-place (they all start with
form, except for subtract. For more information, check out: https://swift.org/
documentation/api-design-guidelines/#name-according-to-side-effects.)

Comparing Sets
Have a look at the following code:

// all of the following return "true"
numbers.isSuperset(of: negativeintegers)
integers.isSubset(of: numbers)
positivenumbers.isStrictSubset(of: numbers)
numbers.isStrictSuperset(of: negativenumbers)
negativenumbers.isDisjoint(with: positivenumbers)

Set A is a superset of set B if every member of B is also a member of A. This also makes B a
subset of A. These are strict supersets/subsets if A contains at least one element that is not
a member of B. In other words: a strict superset or subset means that the two sets are not
equal. Disjoint means the two sets have no elements in common.

In this section, we have looked at sets in detail. Sets are useful in various situations, for
example, removing duplicates. We'll see this in an activity next.

Activity B: Removing Duplicates from a Sequence
The most common method of removing duplicates from a sequence is to just add the entire
sequence to a set, and then create a new sequence from the set. However, this might
re-order the remaining elements. Here, we will use filter to keep the original order, and use
a set to keep track of which values are already in the sequence.

Collections

[114]

By adding the method as an extension to Sequence, it can be used by any collection type,
including Array, Dictionary, and Set (though it would be rather pointless to use it on
dictionaries and sets, as they are already duplicate-free).

To use an Xcode playground to create a method which removes duplicates from a sequence
while preserving the order of the remaining values.

1.	 Open the CollectionsExtra Xcode project we used earlier, and go to Set.swift.
2.	 Paste the following code here:

extension Sequence where Element: Hashable {
 /// Returns an array containing each element in `self` only once, in
the same order.
 public func removeDuplicates () -> [Element] {
 var originals = Set<Element>(minimumCapacity: underestimatedCount)
 return self.filter { x in
 if originals.contains(x) {
 return false
 }
 originals.insert(x)
 return true
 }
 }
}

filter is a method of Sequence, which takes a function, Element -> Bool, and
returns an array with only those elements for which the function returns true. In
this function, we check if the element is already in the originals set. If it is, we
return false (meaning the element will be dropped). If it is not in the set, we add it
to it and return true, so the element will be included in the resulting array.

3.	 Go to SetTests.swift, uncomment the unit test, and run it.

Lesson 4

[115]

Dictionaries
A Dictionary is an unordered collection of mappings/associations from keys to values.
It is very similar to a Set and has the same performance, but stores a key/value pair,
and only the key has to be Hashable. It can be used for storing preferences, or when you
have a group of named values where there are either too many or change too often to be
hardcoded. Then, you can use the names as keys:

The full name is Dictionary<Key, Value>, but it is more commonly written as [Key:
Value].

Dictionary ignores the order in which values are added or removed, and may change them
arbitrarily, just like Set.

Collections

[116]

Working with Dictionaries
Now it's time to lay our hands on dictionaries. Follow these steps to get started:

1.	 To create a dictionary, we can do this:
var numbers = [0: "zero", 1: "one", 10: "ten", 100: "one hundred"]

2.	 We can then print it like this:
print(numbers) // [100: "one hundred", 10: "ten", 0: "zero", 1: "one"]

3.	 To add or change a value, we can do this:
// Add or change value
numbers[20] = "twenty"

4.	 The following lookup returns an optional:
// Lookup returns an optional
if let one = numbers[1] {
 // ...
}

Or, you can use a default value if the key is not found:

// Or you can use a default value if the key is not found
let two = numbers[2, default: "no sensible default"]

5.	 You can remove a value by setting it to nil:
// Remove a value by setting it to nil
numbers[2] = nil

6.	 You can iterate over the contents of the dictionary like this:
// You can iterate over the contents (again: the order is not defined)
for (key, value) in numbers {
 // ...
}

7.	 This is how we can have a collection of all of the keys of the dictionary:
// A collection of all keys
numbers.keys

8.	 This is how we can have a collection of all of the values of the dictionary:

// A collection of all values
numbers.values

Lesson 4

[117]

This is the end of this section. Here, we have looked at dictionaries extensively and
evaluated the differences between arrays, sets, and dictionaries.

Activity C: Using Dictionaries
A CountedSet allows you to add equal elements more than once, and keeps count of how
many of each element it contains. Naturally, it is very useful for counting things, such as
how many times a word appears in a text, without having to store each word more than
once.

To use an Xcode playground to develop a new CountedSet type using a dictionary
internally.

1.	 Open the CollectionsExtra Xcode project we used earlier, and go to CountedSet.
swift.

2.	 Leave the commented-out code as is, and add this to the top of the file:
public struct CountedSet<Element: Hashable> {
 typealias ElementsDictionary = [Element: Int]
 private var elements: ElementsDictionary

 public init() {
 elements = ElementsDictionary()
 }
}

We use a type alias here because ElementsDictionary will be referred to several
times in the code.

3.	 Add the following code below the initialiser:
public mutating func insert(_ newelement: Element, count: Int = 1) {
 elements[newelement, default: 0] += count
}

When inserting, we first get the current count of the element (or 0 if the element is
not in the dictionary), then we add how many times the element should be inserted
(1 by default) to this and insert the new value into the dictionary. += here means
this:

 elements[newelement] = elements[newelement, default: 0] + count

Collections

[118]

4.	 Now, we implement adding a Sequence of elements to the set:
public mutating func insert<S>(contentsOf other: S) where S:Sequence,
S.Element == Element {
 for newelement in other {
 insert(newelement)
 }
}

The generic <S> combined with the where clause allows us to use any sequence
here, as long as its elements are the same type as the elements of this set.

5.	 We also need a way to query how many of an element this set contains:
public func count(for element: Element) -> Int {
 return elements[element, default: 0]
}

If the elements dictionary does not contain the element, we return 0 instead.

6.	 And here is the method for counting the total number of elements:
public var count: Int {
 var result = 0
 for count in elements.values {
 result += count
 }
 return result
}

7.	 It's time to verify whether this is working or not. Go to CountedSetTests.swift,
uncomment the testInsert unit test, and run it.

8.	 Go back to CountedSet.swift.
9.	 Now, we can add some helpful initialisers. Add the following code below the first

initialiser:
public init<S>(_ other: S) where S:Sequence, S.Element == Element {
 self.init()
 insert(contentsOf: other)
}

This allows us to initialise from a sequence:

CountedSet(["a","b","c","a"])

Lesson 4

[119]

10.	 Add the following code below the entire struct declaration:
extension CountedSet: ExpressibleByArrayLiteral {
 public init(arrayLiteral elementarray: Element...) {
 self.init(elementarray)
 }
}

Now, if a function asks for a CountedSet, we can use an array literal directly.

11.	 Within the struct declaration, right below the last count method, insert the
following code:
@discardableResult
public mutating func remove(_ element: Element, count countToRemove: Int
= 1) -> Int {
 guard var count = elements[element] else { return 0 }
 count -= countToRemove
 guard count > 0 else {
 elements.removeValue(forKey: element)
 return 0
 }
 elements[element] = count
 return count
}

This is the most complex code we have used so far. It lowers the count of
the element by the provided amount, and returns the new count. Here's the
explanation:

°° @discardableResult means if we do not use the return value from this
method, we don't want a warning from the compiler.

°° We retrieve the current count of the element. If it is not in the dictionary, we
return 0.

°° Then, we subtract with the provided amount.
°° If the new count is not greater than 0, we remove the element from the

dictionary and return 0.
°° Otherwise, we store the new count in the dictionary and return it.

12.	 At the bottom of the file, there is code for adopting the Collection protocol.
Uncomment it. It is too long to go through in detail here, but feel free to look
through it.

Collections

[120]

13.	 Also uncomment all the unit tests in CountedSetTests.swift, and verify whether
they all pass or not. Notice how the unit tests use methods such as contains and
isEmpty that we did not implement, but got for free because we adopted the
Collection protocol.

14.	 The contains method from the collection protocol is quite inefficient for our type,
because it goes through every single element and compares it to the element it is
searching for. We can do better. Add the following code below the remove method
in the struct declaration:

public func contains(_ element: Element) -> Bool {
 return elements[element] != nil
}

This checks the dictionary directly, which as we mentioned earlier is much faster.

Summary
In this lesson, we covered the three main collections in the Swift Standard Library: Array,
Set, and Dictionary; what they are; and how they can be used. We also learned about
indices, slices/subsequences, and some common protocols. We also implemented methods
for searching in sorted arrays, for removing duplicates from a sequence, and created the
new collection, CountedSet.

In the next lesson, we will explore Strings in detail.

Strings
In the previous lesson, we worked with arrays, sets, and dictionaries, all of which are part
of Swift's collections. In this lesson, we will look at strings in detail.

The wide variety of characters and emojis a modern app may encounter requires correct
handling of Unicode text. Luckily, Swift does this by default. However, this means we have
to treat strings in Swift a bit differently than most programming languages.

Lesson Objectives
By the end of this lesson, you will be able to:

•	 Explain why strings work the way they do in Swift
•	 Create and use strings and substrings
•	 Implement the various common operations you can do with strings

String Fundamentals
Before we get into how to use strings, we will cover why they are the way they are. For
developers coming from other languages, this is a very reasonable question to ask.

Strings

[122]

Character
We won't go into the details of Unicode, but there are several ways of viewing a piece of
Unicode text in Swift. This is done by using different collections:

let string = "The ☀ and 🌙"
string.utf8.count // 19
string.utf16.count // 13
string.unicodeScalars.count // 12

An element of UTF-8 is 1 byte, UTF-16 is 2 bytes, and a Unicode scalar is
4 bytes.

In addition to everyone reporting a different number of symbols in the string, you may
have also noticed that they are all wrong. String itself, however, has the right answer:

string.count // 11

This is because String is an ordered collection of Character. Character represents what
we humans would consider one symbol, regardless of how many bytes it consists of.

The reason for the discrepancies is, of course, the two emojis:

let moon = Character("🌙")
String(moon).utf8.count // 4
String(moon).utf16.count // 2
moon.unicodeScalars.count // 1

let sun: Character = "☀"
String(sun).utf8.count // 6
String(sun).utf16.count // 2
sun.unicodeScalars.count // 2

Even a simple letter such as é may surprise you:

let accented_e: Character = "é"
String(accented_e).utf8.count // 2
String(accented_e).utf16.count // 1
accented_e.unicodeScalars.count // 1

Lesson 5

[123]

There may be several ways of representing the same symbol in Unicode, but Character
still considers them to be equal:

let another_accented_e: Character = "e\u{0301}" // "e" + combining acute
accent
String(another_accented_e).utf8.count // 3
String(another_accented_e).utf16.count // 2
another_accented_e.unicodeScalars.count // 2

accented_e == another_accented_e // true

This is a great example of two values that are equal, but not identical.

Collection
Let's see what kind of a collection String is:

Strings

[124]

StringProtocol contains common string operations.

Comparing this diagram with the one for Array in the previous lesson, we see that both
MutableCollection and RandomAccessCollection are missing.

This is because, as we have seen, symbols may take up varying amounts of space, and in
a MutableCollection, we can replace one element for another. But what if we replace
one character with one that takes more space? Then we would have to move all succeeding
characters to make room, and the MutableCollection protocol does not allow this. It
is the same with RandomAccessCollection: it requires taking approximately the same
amount of time to retrieve the 5th element as the 20,000th, and we can't do that when the
elements are not of the same size.

So, why not add some padding and make all characters in a string take up the same amount
of memory? Well, we did have an array of characters in the previous lesson, which does
just that. Let's bring it back and compare its memory usage with the corresponding string:

An instance of Character takes up eight bytes in an array. The most common characters
usually take up two bytes or fewer in a string, and as strings are often the largest collections
in an application, wasting all that space is not really an option.

Lesson 5

[125]

Index
Just like arrays, strings have indices, which refer to the position of every single character.
But before we get into what the type of strings index is, we should cover what it is not: an
integer.

The index type of an array is an integer. Because every element takes up the same amount
of space, you can ask for the 500th element and it will multiply 500 with the byte size of an
element, add the memory address of the first element, and find the element at the resulting
address.

If we ask a string for the 500th character, it has to start with the first character, see how much
space it takes, move past it, see how much space the next character takes, and so on, and
repeat this 500 times.

On StackOverflow and other places, you will often find code examples which add a new
subscript to String with an integer parameter, allowing us to do something such as this:

for i in 0..<string.count {
 let character = string[i]
 // ...
}

This is extremely inefficient. Consider what is actually happening here: the string has to
process the first character, then the first and second characters, then the first, second, and
third characters, and so on. For a string of merely 500 characters, it will have processed the
first character 500 times, the second one 499, and so on until it has processed characters
n(n+1)/2 or 125,250 times, plus 500 to find the count.

The following, however, will visit each character exactly once, and is much simpler:

for character in string {
 // ...
}

Strings

[126]

Working with String Index
The actual index type of String is String.Index. It's a custom type whose inner
workings we are blissfully unaware of. All operations on it are performed using the
standard Collection and BidirectionalCollection methods on String.

1.	 Let's define a few indices:
let alphabet = "abcdefghijklmnopqrstuvwxyz"

let b_index = alphabet.index(after: alphabet.startIndex)
let a_index = alphabet.index(before: b_index)
let g_index = alphabet.index(a_index, offsetBy: 6)
let e_index = alphabet.index(g_index, offsetBy: -2)

2.	 We can also add a limit to the offset. We get nil if the result goes beyond this limit:
let no_index = alphabet.index(e_index, offsetBy: 30, limitedBy:
alphabet.endIndex)

3.	 To find the index of the first occurrence of a character, we do the following. We get
nil if it is not found:
let i = alphabet.index(of: "z")

4.	 The number of positions one index is from another is found like this:

let a_e_distance = alphabet.distance(from: a_index, to: e_index)

Debugging
Perhaps the biggest drawback of using this custom type instead of an integer comes up
during debugging, when we would like to see what it contains. If we just print an index to
the console, we get something like this:

Swift.String.Index(_compoundOffset: 100, _cache: Swift.String.Index._Cache.
character(1))

This contains exactly nothing of interest. If we add this extension in a unit test module, we
get something more useful:

// use in unit tests
extension String.Index: CustomDebugStringConvertible {
 // The offset into a string's UTF-16 encoding for this index.
 public var debugDescription: String { return "\(encodedOffset)" }
}

Lesson 5

[127]

Now, when we print an index, we get the zero-based position of this index in the string if
this string, so far, only contains characters that can be expressed in one UTF-16 code unit. So it's not
always correct, but better than nothing.

This topic is a primer into the wide world of strings. In this section, we have covered
concepts such as collection, index, and debugging. We'll continue our journey with strings
in the next section.

Activity A: All Indices of a Character
The String.index(of:) method finds the index of the first occurrence of a character in a
string. Create a method which finds all the indices of a character.

To use an Xcode playground to find the indices of a character.

1.	 Open the StringsExtra Xcode project, and go to the StringsExtra.swift file.
2.	 Enter the following code:

extension String {

°° The method definition is similar to the one for index(of:):
public func indices(of character: Character) -> [Index] {
 var result = [Index]()
 var i = startIndex

°° Make sure to not access anything at endIndex, as it will crash. This check
also takes care of empty strings:

 while i < endIndex {
 if self[i] == character {
 result.append(i)
 }

°° Move to the next index, like this:

 i = index(after: i)
 }
 return result
 }
}

This is the traditional way of implementing it, to show how to work directly with
indices. Later, we will learn a much simpler and concise way to do this.

Strings

[128]

3.	 Go to the unit tests in StringsExtraTests.swift.
4.	 Uncomment the first comment block, so this becomes active:

func testIndices()

5.	 Run the unit test and verify that it passes.

Using Strings
So far in this course, we have only covered the Swift Standard Library, but when it comes
to strings we must also include the Foundation framework, as it contains a lot of both basic
and advanced text functionality that is missing from the Swift Standard Library.

Foundation is available on all Apple platforms and has been around for a long time (there
is also a version for other platforms, re-implemented in Swift; see: https://github.com/
apple/swift-corelibs-foundation). It is written in and for Objective-C, but a lot of its
API has been updated to be easier to work with from Swift. Not all of it has been though,
and as we'll see, you might run into some problems when converting Foundation types to
Swift types.

Foundation's string type is NSString, and it works directly with UTF-16 encoded text. It
does not know what the Character type is, and does not necessarily handle Unicode text
correctly like Swift does. NSString can be used as Swift String and vice versa as they can
share the same underlying storage.

It also has CharacterSet, which, despite the name, is a set of UnicodeScalar. It has
several useful predefined sets, like CharacterSet.alphanumerics, .whitespaces,
.decimalDigits, and more. You can only use them if you're lucky enough to have
characters consisting of only one UnicodeScalar:

CharacterSet.alphanumerics.contains(character.unicodeScalars.first!)

Foundation's range type is NSRange, and it uses integers to refer to positions in an
NSString. It can do this efficiently because each element of NSString takes up the same
amount of space. We can always convert a Swift Range to NSRange with NSRange(range,
in: string), but we can't necessarily go the other way, as we will see later on.

Lesson 5

[129]

Creating Strings
Let's look at creating strings by following these steps:

1.	 There are many ways of creating strings. You've already seen the string literal:
let literal = "string from literal"

2.	 There are also multi-line literals:
let multilineLiteral = """
 line 1
 line 2
 line 3 indented

 """

The result is "line 1\nline 2\n\tline 3 indented\n". The closing three
quotes must be at the beginning of the line (excluding indentation) and any
indentation that precedes it will be removed from the beginning of every line in the
string.

3.	 Use backslash to insert special characters like \\ (backslash), \t (horizontal tab),
\n (line feed), \r (carriage return), \" (double quotation mark), and \' (single
quotation mark).

4.	 We can create characters directly from their hexadecimal Unicode code points, like
this:
let blackDiamond = "\u{2666}" // ♦
let brokenHeart = "\u{1F494}" // 💔

5.	 To include variables in the text, we use string interpolation, like this:
let array = [1,2,3]
let stringInterpolation = "The array \(array) has \(array.count) items."
// "The array [1, 2, 3] has 3 items."

Strings

[130]

6.	 Strings can describe absolutely any type, as shown here:
struct CustomType {
 let value: Int
 let otherValue: Bool
}

let customType = CustomType(value: 5, otherValue: false)
String(describing: customType) // "CustomType(value: 5, otherValue:
false)"

7.	 We can customize the description, like this:
extension CustomType: CustomStringConvertible {
 var description: String {
 return "\(value) and \(otherValue)"
 }
}

String(describing: customType) // "5 and false"

8.	 Text can be repeated, as shown here:
String(repeating: "la", count: 5)

9.	 We can read text files, like this:

import Foundation

do {
 let fileContents = try String(contentsOfFile: "file.txt")
} catch { /* ... */ }

Common Operations
Follow these steps to look at how to implement common operations on a string:

1.	 Many of the common sequences and collection methods are useful on strings too, as
shown here:
let string = """
 Line 1
 line 2
 """
let range1 = ..<string.index(of: "1")!

Lesson 5

[131]

// return the substring over range 1
string[range1]

// return true if the string begins with "Line"
string.hasPrefix("Line")
// return true if the string ends with "2"
string.hasSuffix("2")

2.	 These mutate the string:
var mutablestring = string

// remove the characters in range1, and insert "line up" there.
mutablestring.replaceSubrange(range1, with: "line up")
// remove the characters in range1.
mutablestring.removeSubrange(range1)
// remove the first character.
mutablestring.removeFirst()
// remove the first 2 characters.
mutablestring.removeFirst(2)
// remove the last character.
mutablestring.removeLast()
// remove the last 2 characters.
mutablestring.removeLast(2)

3.	 There aren't many operations specifically made for strings:
// return a new string in uppercase.
string.uppercased()
// return a new string in lowercase.
string.lowercased()

4.	 We get a lot more if we import Foundation, like this simple test for the existence of
a substring:
string.contains(" 1")

Strings

[132]

5.	 All of the following methods return a new string with the changes; the original
string is left intact:
// new string with all the words capitalised (ignoring language)
string.capitalized
// new string with all the words capitalised, using the rules of the
language from the provided locale
string.capitalized(with: Locale.current)
// new string with all occurrences of one substring replaced with
another
string.replacingOccurrences(of: "Line", with: "line")
// new string with all occurrences of a substring removed
string.replacingOccurrences(of: "Line", with: "")
// new string with all occurrences of a substring in the provided range
removed, using the provided options
string.replacingOccurrences(of: "line", with: "triangle", options:
.caseInsensitive, range: string.startIndex..<string.index(of: "\n")!)

// the range of the first character that belongs to the provided
CharacterSet
string.rangeOfCharacter(from: .decimalDigits)
// the range of the first occurrence of the substring
let range = string.range(of: "Line")!
// the substring over this range
string[range]
// the range of the line or lines containing the provided range
string.lineRange(for: range)
// new string with the characters in the provided CharacterSet removed
from the beginning and the end
" \t trim \n ".trimmingCharacters(in: .whitespacesAndNewlines)
// a new string of the given length, by either removing characters from
the end or adding 'withPad' to the end
"Padded".padding(toLength: 10, withPad: " ", startingAt: 0)
"Pad".padding(toLength: 10, withPad: "_ ", startingAt: 1)

6.	 The following methods return an array of strings:

// an array of strings, from splitting the original string over the
provided substring
string.components(separatedBy: ". ")
// an array of strings, from splitting the original string over
characters in the provided CharacterSet
string.components(separatedBy: .newlines)

Lesson 5

[133]

Implementing Extra Text Operations on a String
Follow this step to implement extra text operations on a string:

1.	 Open Strings.playground on the Common string operations page and
see if you can find more text operations on string, using autocomplete and the
documentation in Xcode.

This section is focused on how we can use strings and the various operations on strings that
are allowed in Swift. Next, we'll look at substrings in detail.

Activity B-1: All Ranges of a Substring
There is already a method on String for finding the first range of a substring. This method
will find all of the ranges of a substring.

To use an Xcode playground to create a method on string which finds all ranges of a
substring.

1.	 Open the StringsExtra Xcode project, and go to the StringsExtra.swift file.
2.	 Enter the following code:

import Foundation

extension String {

°° The method has the same parameters as String.range:
 public func allRanges(of aString: String,
 options: String.CompareOptions = [],
 range searchRange: Range<String.Index>? = nil,
 locale: Locale? = nil) -> [Range<String.Index>] {

°° If no search range is given, we search the entire string:
 var searchRange = searchRange ?? startIndex..<endIndex
 var ranges = [Range<String.Index>]()

°° while let is a very useful combination of loop and optionals. It continues
until self.range returns nil:

 while let foundRange = self.range(of: aString, options: options,
range: searchRange, locale: locale) {
 ranges.append(foundRange)

Strings

[134]

If we are searching backwards, we need to narrow the search range from the
right instead of from the left. We only narrow it by one character so we can find
repeating substrings (like the five occurrences of lala in lalalalalala):

 searchRange = options.contains(.backwards) ?
 searchRange.lowerBound..<self.index(before: foundRange.
upperBound) :
 self.index(after: foundRange.lowerBound)..<searchRange.
upperBound
 }
 return ranges
 }
}

3.	 Go to the unit tests in StringsExtraTests.swift.
4.	 Uncomment the first comment block, so these become active:

 let string = """
 func testAllRanges()

5.	 Run all unit tests and verify that they pass.

Activity B-2: Counting Words, Sentences, and
Paragraphs
Perhaps the most straightforward way of counting the number of words in a string is to
count the number of spaces and add one. But, even if you only have text using the Latin
alphabet, this will often be wrong (there could be two spaces in a row, and doesn't is
technically two words). Foundation has NSLinguisticTagger, which handles these things
and other alphabets. Not all of its APIs have been updated for Swift yet, so it can be a bit
cumbersome to use, but the method that we will use here is fairly straightforward.

To use an Xcode playground to create a method on string which can count words,
sentences, and paragraphs.

1.	 Open the StringsExtra Xcode project, and go to the StringsExtra.swift file.
2.	 Enter the following code:

extension String {

Lesson 5

[135]

°° NSLinguisticTaggerUnit is an enum with cases paragraph, sentence,
and word:

 public func countLinguisticTokens(ofType unit: NSLinguisticTaggerUnit,
options: NSLinguisticTagger.Options = [.omitPunctuation,
.omitWhitespace]) -> Int {

°° This class can do a lot of advanced text analysis, such as detecting nouns,
verbs, and so on, and find the stem of words, but in this case we are only
interested in linguistic tokens:

 let tagger = NSLinguisticTagger(tagSchemes: [.tokenType], options:
0)
 tagger.string = self

°° Like everything in Foundation, this class works on NSString, which
sometimes uses NSRange instead of Range. Luckily, converting from Range
to NSRange is no problem:

 let range = NSRange(startIndex..<endIndex, in: self)
 var result = 0

This closure has parameters for a tag type, nsrange, and a Boolean for whether or
not it should stop, but in this case we are only interested in how many times it is
called:

 tagger.enumerateTags(in: range, unit: unit, scheme: .tokenType,
options: options, using: { _, _, _ in
 result += 1
 })
 return result
 }
}

3.	 You can call it like this:
string.countLinguisticTokens(ofType: .paragraph)
string.countLinguisticTokens(ofType: .sentence)
string.countLinguisticTokens(ofType: .word)

4.	 Go to the unit tests in StringsExtraTests.swift.

Strings

[136]

5.	 Uncomment the next comment block, so these become active:
let english = """
func testCountLinguisticTokens_English() {
let internationalText = """
func testCountLinguisticTokens_International() {

6.	 Run all unit tests and verify that they pass.

Substring
SubString is for strings like what ArraySlice is for arrays: a view of a part of a string, where
its startIndex and endIndex are indices into the original string. It conforms to the same
protocols as String:

Lesson 5

[137]

StringProtocol contains many of the common text operations, so when you write
functions that take a string parameter you can often use StringProtocol instead to also
accept substrings. When you do, you have to use generics, as shown here:

func foo<S: StringProtocol>(s: S) {
 // use 's' almost like a normal string.
}

Just as with ArraySlice, substrings keep a reference to the entire string, so when you
are done processing substrings you should turn them into normal strings and allow the
original string to be released (if nothing else is using it):

String(substring)

Creating Substrings
Now it's time to create substrings. Follow these steps to do so:

1.	 We can create substrings by passing a range of indices to a string subscript:
string[from..<upTo]
string[from...upToAndIncluding]

2.	 And we get a substring of the entire string with this little shortcut:
string[...]

3.	 The following methods return a substring and leave the original string intact:
let string = "This is a pretty 👍 sentence"

// a substring from the 2nd character and out
string.dropFirst()
// a substring from the 6th character and out
string.dropFirst(5)
// a substring from the first up to and including the second last
string.dropLast()
// a substring from the first up to the 9th last character
string.dropLast(9)
// a substring from the first space and out
string.drop(while: {$0 != " "})

// the index of the first space, or the first character if there are no
spaces
let space_index = string.index(of: " ") ?? string.startIndex

Strings

[138]

// a substring with the first 7 characters
string.prefix(7)
// a substring from the first up to space_index (excluding)
string.prefix(upTo: space_index)
// a substring from the first up to and including space_index
string.prefix(through: space_index)
// a substring of the consonants at the beginning of the string ("Th")
string.prefix(while: {!["a", "e", "i", "o", "u"].contains($0)})
// a substring of the last 8 characters
string.suffix(8)
// a substring from space_index and out
string.suffix(from: space_index)

4.	 The following methods return an array of substrings:

// the substrings between the spaces
string.split(separator: " ")
// split the string into 5 substrings (at the first 4 spaces), including
the empty substring between the 2 adjacent spaces
string.split(separator: " ", maxSplits: 4, omittingEmptySubsequences:
false)
// the substrings between the vowels
string.split(whereSeparator: {["a", "e", "i", "o", "u"].contains($0)})

Parsing Strings
Follow these steps to parse strings:

1.	 Go to the Exercise - Parse page of the Strings playground. Enter the code to
turn this:
let info = """
 title: Beginning Swift
 type: course
 year: 2018
 publisher: Packt Publishing
 topic: programming
 """

Lesson 5

[139]

Into this dictionary:

["year": "2018", "publisher": "Packt Publishing", "title": "Beginning
Swift", "topic": "programming", "type": "course"]

2.	 A possible solution is this:

for line in info.split(separator: "\n") {
 guard let colon = line.index(of: ":") else { continue }
 let key = line.prefix(upTo: colon)
 let value = line.suffix(from: line.index(colon, offsetBy: 2))
 result[String(key)] = String(value)
}

Converting NSRange to Range
Earlier, we made the countLinguisticTokens method for counting the number of words,
sentences, and paragraphs in a string. It would be nice if we could get hold of the actual
words, sentences, and paragraphs, too:

func linguisticTokens(ofType unit: NSLinguisticTaggerUnit, options:
NSLinguisticTagger.Options = [.omitPunctuation, .omitWhitespace]) ->
[String] {
 let tagger = NSLinguisticTagger(tagSchemes: [.tokenType], options: 0)
 tagger.string = self
 let range = NSRange(startIndex..<endIndex, in: self)
 var result = [String]()
 tagger.enumerateTags(in: range, unit: unit, scheme: .tokenType, options:
options, using: { _, tokenRange, _ in
 let token = (self as NSString).substring(with: tokenRange)
 result.append(token)
 })
 return result
}

The only changes are the return type and these two lines:

 let token = (self as NSString).substring(with: tokenRange)
 result.append(token)

tokenRange is of type NSRange, so we can't use it directly on String, but have to cast
ourselves into NSString first.

Strings

[140]

This works fine, but it would be even nicer and more Swifty if we could get back ranges
instead of strings, so we can decide for ourselves if we want to turn them into substrings
or strings or do other operations with them. If we try to convert the NSRange to a Swift
Range with Range(tokenRange, in: self), it returns an optional, and worse, in
the third-last line of the example text, it returns nil. Twice. This is presumably because
these characters do not fit in one UTF-16 code unit, and the conversion would create an
index pointing to the middle of a Swift Character (see methods linguisticTokens2 and
linguisticTokens3 for attempts at moving the index to the correct side of this character).

This highlights the usefulness of a string type which takes care of these things for us, and
potential problems with converting between Foundation types and Swift types, not to
mention the importance of testing with various languages.

Luckily, there is another Foundation method we can use that returns Swift ranges. We will
use enumerateLinguisticTags in the next activity.

In this section, we have looked at substrings in detail: starting from its relation to strings to
creating substrings.

Activity C: CamelCase
Such a method can be used to automatically format code or create a text service on the Mac.

To use an Xcode playground to create a method on String, which turns it into one
CamelCased word, optionally with the first letter lowercased.

1.	 Open the StringsExtra Xcode project, and go to the StringsExtra.swift file.
2.	 Add this code to the bottom of the file:

extension String {

°° First, we create a method which returns an array of ranges of all the words
in the string:

 public func wordRanges() -> [Range<String.Index>] {
 let options: NSLinguisticTagger.Options = [.omitPunctuation,
.omitWhitespace]
 var words = [Range<String.Index>]()

°° This method on String gives us Swift ranges (as opposed to the NSRanges
of the linguisticTokens method we used previously). Unfortunately, it
doesn't provide sentences or paragraphs, but in this case words are all we
need:

Lesson 5

[141]

 self.enumerateLinguisticTags(
 in: startIndex..<endIndex,
 scheme: NSLinguisticTagScheme.tokenType.rawValue,
 options: options) { (_, range, _, _) in
 words.append(range)
 }
 return words
 }

°° Now, for the camelCased method itself, which returns a capitalised
CamelCase word by default:

 public func camelCased(capitalised: Bool = true) -> String {

°° First, we get all the ranges of the words in this string. We exit if there are no
words in order to avoid a crash in the next line (removeFirst removes and
returns the first element, and crashes if there isn't one):

 var wordRanges = self.wordRanges()
 guard !wordRanges.isEmpty else { return "" }
 let firstRange = wordRanges.removeFirst()

°° We initialize result to the first word, which is optionally capitalised. Note
that both capitalized and lowercased are methods on SubString which
return strings:

 var result = capitalised ? self[firstRange].capitalized :
self[firstRange].lowercased()

Then, it's a simple matter of going through the remaining words, capitalizing them,
and adding them to result:

 for range in wordRanges {
 result += self[range].capitalized
 }
 return result
 }
}

3.	 Go to the unit tests in StringsExtraTests.swift.
4.	 Uncomment the next comment block, so this becomes active:

 func testCamelCased() {

5.	 Run all unit tests and verify that they pass.

Strings

[142]

Summary
In this lesson, we learned about strings in Swift, how they are and why, and how to use
them. We've also learned about string indices, substrings, and some things to look out
for when using strings with the Foundation framework. We have also added some useful
extensions to String.

In the next lesson, we will take a brief look at functional programming and explore lazy
operations.

Functional Programming and
Lazy Operations

In the previous lesson, we looked at strings and substrings. In this lesson, we will take a
brief look at functional programming and learn what lazy operations are. We will end this
lesson with an important but often overlooked topic: writing Swifty code.

Functional programming is a style of programming which tries to keep things simple by
avoiding state, especially mutable state, and using a relatively small set of highly versatile
functions/methods which take other functions as input. The Swift Standard Library
contains several of these. They often make the code shorter, simpler, and easier to read
if you know what they do. They can also free you from the burden of having to come up
with names for temporary variables. Even if you don't use them in your own code, it is
important to know how they work as a lot of Swift code out there uses them.

Lesson Objectives
By the end of this lesson, you will be able to:

•	 Explain functional programming
•	 Implement the filter, map/forEach, flatMap, and reduce methods
•	 Use lazy sequences to delay operations until they are needed
•	 Write proper Swifty code

Functional Programming and Lazy Operations

[144]

Function Type

Open Functional.playground at the Introduction page.

First, let's reiterate what a function type is:

var sum: (Int, Int) -> Int

The type of sum is a function that takes two Int values and returns one Int value. We can
assign both functions and closures to it, as they are essentially the same thing:

func sumFunction(a: Int, b: Int) -> Int {
 return a + b
}
let sumClosure = {(a: Int, b: Int) in return a + b}

sum = sumFunction
sum = sumClosure

We can also assign an operator to it:

sum = (+)

This is because an operator is a function (the parentheses around the + operator are just
to signal that we want to use it as a function, not add things together right away). The
definition of the + operator for Int is:

static func +(lhs: Int, rhs: Int) -> Int

So, whenever a function has a parameter of a function type, we can supply an operator, as
long as the input and output match:

func perform(operation: (Int, Int) -> Int, on a: Int, _ b: Int) -> Int {
 return operation(a,b)
}

perform(operation: +, on: 1, 2)

Initialisers can also be used as functions:

extension Int {
 init(add a: Int, _ b: Int) {
 self.init(a + b)

Lesson 6

[145]

 }
}

sum = Int.init
perform(operation: Int.init, on: 2, 3)

We have to use .init to show that we are referring to an initialiser, not the type Int itself.

If several functions have the same name, or initialisers have the same number and types of
arguments, we can specify which one we are referring to by including the argument labels.
Here are the full names of the preceding functions:

sumFunction(a:b:)
perform(operation:on:_:)
Int.init(add:_:)

Functional Methods

Open Functional.playground at the Methods page.

The following sections show different ways of performing the same tasks.
They say nothing about which version, if any, is better.

filter
The filter method looks like this:

func filter(_ isIncluded: (Element) throws -> Bool) rethrows -> [Element]

This is a simple method on Sequence, which we have already used. The input function
takes an element of the sequence and returns either false or true. filter returns an array
of only those elements for which the input function returns true:

let numbers = [-4,4,2,-8,0]
let negative = numbers.filter {$0<0} // [-4, -8]

Functional Programming and Lazy Operations

[146]

Set and Dictionary have their own versions of this method, which return a Set or
Dictionary, respectively.

Using the filter Method
Let's look at using the filter method by following this step:

1.	 In Activity A of Lesson 5, we implemented a method on String for finding the
indices of all occurrences of a character. Go to the - filter page in Functional.
playground and replace the body of the method with one that uses filter. Make
sure the unit test passes afterwards.
Here's a hint: when introducing arrays in Lesson 4, we mentioned how to get all the
indices of a collection.
Here's the solution:

return indices.filter { self[$0] == character }

map
map is a method often used on container types. For Sequence, it looks like this:

func map<T>(_ transform: (Element) throws -> T) rethrows -> [T]

Each element of the sequence is passed to the input function, and the outputs are returned
in an array. This is a straight one-to-one transformation, where the resulting array has the
same number of elements as the sequence.

map is remarkably versatile. Once you know about it, you'll be seeing uses for it
everywhere. Here's how we can use it to perform mathematical operations on arrays of
numbers:

let numbers = [-4,4,2,-8,0]
let squared = numbers.map {$0*$0} // [16, 16, 4, 64, 0]

There is also a similar function on the sequence that doesn't return anything:

func forEach(_ body: (Element) throws -> Void) rethrows

This does the exact same thing as map, except it doesn't return an array, because the input
function doesn't return anything. It avoids having to create and return an array of Void
(even Void takes up space in an array):

squared.forEach { print($0) }

Lesson 6

[147]

Perhaps surprisingly, we also have map on optionals. This makes sense if you think of an
optional as a container of either 0 or 1 elements:

func map<U>(_ transform: (Element) throws -> U) rethrows -> U?

If the optional is nil, map returns nil. If not, the value the optional contains is passed to the
input function, and the result is returned in an optional.

This is very useful for initialisers and other functions which return optionals, such as
Int(String), which can only create an integer if the string contains one:

let textTimesTwo = Int("4").map { $0 * 2 }

Or, if we have an optional delegate we want to pass to a function, but only if it is not nil.
The obvious way of doing it is by doing this:

if let delegate = delegate {
 doSomething(with: delegate)
}

Using map is shorter and more to the point:

delegate.map(doSomething)

Using the map Function
Now that we had a brief about the map function, let's see how we can make use of it. Here
are the steps to do so:

1.	 Go to the - map page in Functional.playground.
2.	 Create an array with the number of characters of each word in text.
3.	 Edit the body of the range(where predicate: (Element) throws -> Bool)

function to use the optional map instead of guard let.
Solution 1:
let wordLengths = text.split(separator: " ").map {$0.count}

Solution 2:

return try index(where: predicate).map { start in
 let end = try self[start..<endIndex]
 .index(where: { try !predicate($0) }) ?? endIndex
 return start..<end
}

Functional Programming and Lazy Operations

[148]

flatMap
What if the function you provide to map returns an array, and you don't want to end up
with an array of arrays? The flatMap method on Sequence takes care of that:

func flatMap<S:Sequence>(_ transform: (Element) throws -> S) rethrows ->
[S.Element]

The input function takes in an element and returns a sequence of elements, possibly of
another type. flatMap runs the input function on each of the original sequence's elements,
joins the resulting sequences together, and returns them in an array. You can think of it
as first running a normal map, then flattening the resulting sequence of sequences into a
normal sequence.

Here's how you can use it to split up an array of ranges into a single array of bounds:

let ranges = [0...2, 5...7, 10...11]
let bounds = ranges.flatMap {[$0.lowerBound, $0.upperBound]}
// [0, 2, 5, 7, 10, 11]

There is also a slightly different method of the same name on Sequence:

func flatMap<U>(_ transform: (Element) throws -> U?) rethrows -> [U]

Here, the input function returns an optional, even if the sequence does not contain
optionals. Every time the input function returns nil, it is ignored. This is more like a
combination of map and then filtering out all nil values. The method is misnamed, and
will be renamed to compactMap (https://github.com/apple/swift-evolution/blob/
master/proposals/0187-introduce-filtermap.md) in Swift 4.1:

["a","1","b","3"].flatMap(Int.init) // [1, 3]

Optional has its own version of flatMap:

func flatMap<U>(_ transform: (Element) throws -> U?) rethrows -> U?

If the optional is nil, flatMap returns nil. If not, the value the optional contains is passed
to the input function, and the result is returned. Using this function instead of map avoids
getting an optional of an optional in return:

var stringOptional: String?
...
let intOptional = stringOptional.flatMap(Int.init)

Lesson 6

[149]

Using the flatMap Function
Follow these steps to learn how to use the flatMap function:

1.	 Go to the - flatMap page in Functional.playground.
2.	 Create the inverted array using one flatMap instead of a filter and a map.
3.	 Change the body of the range(between:and:) function to use flatMap and map

instead of guard let.
Solution 1:
let inverted = numbers.flatMap { nr in
 return nr == 0 ? [] : [1.0/Double(nr)]
}

Or:
let inverted = numbers.flatMap { nr in
 return nr == 0 ? nil : 1.0/Double(nr)
}

Solution 2:
public func range(between fromElement: Element, and toElement: Element)
-> Range<Index>? {
 return index(of: fromElement)
 .flatMap { fromIndex in
 let start = index(after: fromIndex)
 return suffix(from: start).index(of: toElement)
 .map { toIndex in start..<toIndex }
 }
}

Or if you want to go all the way:

public func range(between fromElement: Element, and toElement: Element)
-> Range<Index>? {
 return index(of: fromElement)
 .map(index(after:))
 .map(suffix(from:))
 .flatMap { suffix in
 suffix.index(of: toElement)
 .map { suffix.startIndex..<$0 }
 }
}

Functional Programming and Lazy Operations

[150]

reduce
reduce is used to produce a single value from a sequence:

func reduce<Result>(_ initialResult: Result, _ nextPartialResult: (Result,
Element) throws -> Result) rethrows -> Result

It can be used to, for example, multiply all the numbers together:

let multiplied = negative.reduce(1) { result, element in result * element }

First, it calls the input function with initialResult and the first element of the sequence.
The result is passed to the input function again, together with the next element of the
sequence. After going through the entire sequence, the last result from the input function is
returned.

There is another version where the result parameter to the input function is inout, in other
words, mutable. The input function itself doesn't return anything:

func reduce<Result>(into initialResult: Result, _ updateAccumulatingResult:
(inout Result, Self.Element) throws -> ()) rethrows -> Result

Here is the previous example using this version:

let multiplied2 = negative.reduce(into: 1) { result, element in result =
result * element }

The mutable version is best for producing more complex values, such as arrays. It lets us
directly add to one array in place instead of having to create a new array for every run of
the input function.

Using the reduce Function
Now, follow the given step to implement the reduce function:

1.	 Go to the - reduce page in Functional.playground. Compute the average using
reduce.

Here's the solution:

let average = Double(numbers.reduce(0, +)) / Double(numbers.count)

This is the end of our journey with functional programming. In this section, we described
functional programming and worked with four important functions: filter, map, flatMap,
and reduce.

Lesson 6

[151]

Activity A: Implementing Functional
Programming
We want to make the code clearer, more concise, and hopefully easier to read.

To use an Xcode playground to make a part of the code in CountedSet from Lesson 4,
Collections, more functional.

1.	 Duplicate the CollectionsExtra project from Lesson 4, and name the duplicate
CollectionsExtraFunc.

2.	 Open the new project in Xcode, and go to CountedSet.swift.
3.	 Go to the following method:

 public var count: Int {
 var result = 0
 for count in elements.values {
 result += count
 }
 return result
 }

4.	 This is the archetypical use case for reduce. Replace the body of the function with
this:
 return elements.values.reduce(0, +)

Beautiful, isn't it?

5.	 Next, go to the following function:
 public mutating func insert<S>(contentsOf other: S)
 where S:Sequence, S.Element == Element {

 for newelement in other {
 insert(newelement)
 }
 }

6.	 One option is to use forEach:
 other.forEach({self.insert($0)})

7.	 Preferably, we would use other.forEach(insert) here but it leads to an error
message about self being immutable, even though we are in a mutating method.
There is a merge (https://developer.apple.com/documentation/swift/

Functional Programming and Lazy Operations

[152]

dictionary/2892855-merge) method on Dictionary that is perfect for us. It takes a
sequence of key-value pairs and adds it to the dictionary. Every time it encounters
a key that already exists, it passes the current value and the new one to the function
we provide, and uses whatever that function returns as the new value:
 elements.merge(other.lazy.map { ($0, 1) }, uniquingKeysWith: +)

The elements dictionary has elements for keys and their count as value.

First, we convert the other sequence to key-value pairs, which is simple since
the count of each element is 1 (we will learn about the lazy property in the next
section). And for any keys that already exist, we just need to add their values
together with the + operator/function.

Lazy Operations
All the sequences and methods we have looked at so far this lesson have been eager, which
means they perform their operations immediately, and filter, map, and flatMap return
their results in arrays. But sometimes, we may want to delay operations until they are
needed.

Say you have a very large array, and you want to first use map and then perform other
operations. If done eagerly, map will create a new array with the same number of
elements as the original one to store its results. But if we do it lazily, map will return a
LazyMapSequence, which will perform each map operation directly when asked for,
without using any intermediate storage.

Infinite sequences must be handled lazily, as they obviously cannot be stored.

Lesson 6

[153]

Lazy Sequences

Have a look at the preceding diagram that talks of lazy sequences. A lazy sequence is one
that conforms to LazySequenceProtocol. The original sequence itself may or may not
work lazily internally, but some further operations on the sequence are lazy, for example,
filter, map, flatMap, drop(while:), and prefix(while:).

Open Functional.playground at the Lazy sequences page.

To make a sequence lazy, just use the lazy property:

let array = [1,2,3,4]
let lazyArray = array.lazy

The actual type we get back depends on the type of the original sequence. For array, it is La
zyRandomAccessCollection<Array<Element>>.

Functional Programming and Lazy Operations

[154]

We can chain many operations together:

let complexType = lazyArray
 .flatMap { -2..<$0 }
 .map { $0*$0 }
 .filter { $0<4 }

Note that none of the operations have been performed yet. This won't happen until we turn
the sequence into an array (Array(complexType)), use it in a for…in loop, or perform an
operation that is not lazy:

let eager = complexType.dropFirst(4)

One thing you will notice about lazy sequences is that the types may become very long
and complex. For example, the type signature for complexType mentioned previously is as
follows:

LazyFilterCollection<LazyMapCollection<FlattenBidirectionalCollection<LazyM
apBidirectionalCollection<[Int], CountableRange<Int>>>, Int>>

If a type signature threatens to get out of hand, we can shorten it with this:

let shorterTypeSignature = AnySequence(complexType).lazy
// LazySequence<AnySequence<Int>>

Beware that this may prevent some optimizations, as the compiler no longer knows what
types are at work.

If they save memory, why not always use lazy sequences?

Because they are not necessarily faster. Lazy operations do not store their
results, so every time they are called, they have to do the same operation
again. You have to be careful which parts of your chain of operations are
lazy to avoid redoing the same operations over and over.

Lesson 6

[155]

Sequence Internals

Open Functional.playground at the Sequence internals page.

The Sequence protocol looks like this (from the Swift source code, slightly simplified; see
https://github.com/apple/swift/blob/master/stdlib/public/core/Sequence.
swift):

public protocol Sequence {
 /// A type representing the sequence's elements.
 associatedtype Element

 /// A type that provides the sequence's iteration interface and
 /// encapsulates its iteration state.
 associatedtype Iterator : IteratorProtocol where Iterator.Element ==
Element

 /// Returns an iterator over the elements of this sequence.
 func makeIterator() -> Iterator
}

This, of course, begs the question: so what is IteratorProtocol?

public protocol IteratorProtocol {
 /// The type of element traversed by the iterator.
 associatedtype Element

 /// The next element in the underlying sequence,
 /// if a next element exists; otherwise, `nil`.
 mutating func next() -> Element?
}

Every time a sequence is used in a for…in loop, or when other methods go through its
elements, it first returns an iterator from makeIterator, which in turn provides one
element at a time from next, until it is empty and returns nil.

Functional Programming and Lazy Operations

[156]

Creating Lazy Operations

Open Functional.playground at the Lazy operations page.

How do we create operations that work lazily? For more complex operations, including
those that use recursion, it is often best to create a new type which implements the
Sequence and IteratorProtocol protocols. But for simpler tasks, there are two very
convenient functions the Standard Library provides.

sequence(first:next:)
Here is the function:

func sequence<T>(first: T, next: @escaping (T) -> T?) -> UnfoldSequence<T,
(T?, Bool)>

This function creates the sequence first, next(first), next(previous element),
next(previous element), and so on, until next returns nil (or, if it's infinite, the
sequence will continue forever).

It is very useful for following references:

for view in sequence(first: someView, next: { $0.superview }) {
 // someView, someView.superview, someView.superview.superview, ...
}

It is also useful for some mathematical sequences:

let powersOf2 = sequence(first: 1) {
 let result = $0.multipliedReportingOverflow(by: 2)
 return result.overflow ? nil : result.partialValue
}

sequence(state:next:)
Here is the function:

func sequence<T, State>(state: State, next: @escaping (inout State) -> T?)
-> UnfoldSequence<T, State>

This creates a sequence by repeatedly passing mutable State to the next function. It is
useful when there are changing values that are different than the output.

Lesson 6

[157]

Here is the obligatory Fibonacci sequence example (where each element is the sum of the
previous two elements):

let fibonacci = sequence(state: (0,1)) { numbers -> Int? in
 numbers = (numbers.1, numbers.0 + numbers.1)
 return numbers.0
 }.prefix(91)

This outputs 1, 1, 2, 3, 5, 8, and so on. We limit the sequence to the first 91 elements,
because the 92nd is too large to fit in an Int type, and the program will crash.

For a slightly more complex example, this method returns the elements of the underlying
sequence in groups of two, in tuples:

extension LazySequenceProtocol {
 /// Group the elements of this sequence in tuples of 2.
 /// If there is an odd number of elements, the last element is discarded.
 func group2() -> LazySequence<UnfoldSequence<(Element, Element),
Iterator>> {
 return sequence(state: self.makeIterator()) { iterator in
 let result = iterator.next().flatMap { a in
 iterator.next().map { b in (a,b) }
 }
 return result
 }.lazy
 }
}

Ideally, we would return directly without using result, but then the
compiler complains that type of expression which is ambiguous without more
context.

Here, we use the iterator of the underlying sequence as the mutable state, and only return a
value if both calls to iterator.next() are not nil. We use flatMap first, because the next
line can also be nil.

The code from let result to return result does the same as this:

guard let a = iterator.next(),
 let b = iterator.next()
 else { return nil }
return (a,b)

Functional Programming and Lazy Operations

[158]

In this section, we have covered what lazy operations are and how they are useful. We'll
end this section with an activity that allows us to implement the lazy version of a method.

Activity B: Implementing a Lazy Version of a
Method
We want to make the method use less memory, or be more efficient if we only need some of
the ranges.

To use an Xcode playground to make a lazy version of the allRanges method from Lesson
5, Strings.

1.	 Duplicate the StringsExtra project from Lesson 4, and name the duplicate
StringsExtraLazy.

If you did not finish the StringsExtra project, you can use the project
provided for this lesson, and check out the Activity_B_start_here
branch in the Xcode Source Control Navigator (⌘2).

2.	 Open a new project, and go to StringsExtra.swift.
3.	 First, it would be nice if both the current and the lazy version of the method could

be used on both strings and substrings. To achieve this, we must move the current
version from String to StringProtocol (we can do this because the method we
use inside, range(of:), is also available on StringProtocol). At the top of the file,
change the line extension String { to extension StringProtocol {.

4.	 We get an error message a couple of lines below, saying this:
Cannot convert value of type 'Range<Self.Index>' to expected argument
type 'Range<String.Index>'

This is because even though only String and Substring conform to StringProtocol,
and they both use String.Index as index type, this associated type has not been set
on StringProtocol. We need to constrain our extension:

extension StringProtocol where Index == String.Index {

Lesson 6

[159]

5.	 There is still one error in countLinguisticTokens. We won't deal with that now,
but just move that method to the extension on String below.

6.	 Run unit tests, and verify that they pass.
7.	 At the bottom of the file, add the following:

extension LazySequenceProtocol where Elements: StringProtocol, Elements.
Index == String.Index {

}

Here, we are adding the same constraints as in the preceding extension, except we
add them to LazySequenceProtocol.Elements.

8.	 Paste a copy of the original allRanges method into the new extension. Some errors
appear:
Use of unresolved identifier 'startIndex'
Use of unresolved identifier 'endIndex'

This is because we are no longer in String. We are in LazySequenceProtocol, and
it does not have those properties. However, its elements property is a string or a
substring, thanks to the constraints we added to the extension. So, for every error
that now appears, insert elements. in front of the identifier mentioned in the error
message, for example:
 var searchRange = searchRange ?? startIndex..<endIndex

The preceding line of code becomes this:

 var searchRange = searchRange ?? elements.startIndex..<elements.
endIndex

9.	 Verify that everything builds okay (⌘B).
10.	 Now, let's look at the method and how to make it lazy. We will be returning a

sequence of some kind, but we're not quite sure which yet. For now, we can just
remove the return type from the function definition, and the return statement at
the end. We no longer need the ranges variable; remove the two lines it appears in.

Functional Programming and Lazy Operations

[160]

11.	 We should now be left with this:
extension LazySequenceProtocol where Elements: StringProtocol, Elements.
Index == String.Index {
 public func allRanges(of aString: String,
 options: String.CompareOptions = [],
 range searchRange: Range<String.Index>? = nil,
 locale: Locale? = nil) {

 var searchRange = searchRange ?? elements.startIndex ..< elements.
endIndex

 while let foundRange = self.elements.range(
 of: aString, options: options,
 range: searchRange, locale: locale) {

 searchRange = options.contains(.backwards) ?
 searchRange.lowerBound ..< self.elements.index(before:
foundRange.upperBound) :
 self.elements.index(after: foundRange.lowerBound) ..<
searchRange.upperBound
 }
 }
}

The code inside the while loop is what will be run for each turn of the sequence we
are creating. We need to identify what state is changing each time. In this case, it is
easy to see, as searchRange is the only variable left.

12.	 So, we have some state external to the loop; the sequence(state:) function seems
like a good fit. Insert this on the line above the while loop:
 let result =

Lesson 6

[161]

13.	 Begin to type seq, and select sequence(state: (and so on) from the auto
completion pop-up menu. Enter searchRange in the first blue field, press Tab, and
then press enter on the next blue field. You are left with this:
 let result = sequence(state: searchRange) { () -> T? in

 }

14.	 We can just call the input parameter to the closure searchRange as well, and
the return type, the element type of the sequence we are now creating, is
Range<String.Index>:
 let result = sequence(state: searchRange) {
 (searchRange) -> Range<String.Index>? in
 }

15.	 Move the closing brace down so the entire loop is inside the closure. Ignore the
Missing return in a closure… error message.

16.	 We need to know when to stop, and that is when foundRange is nil. Change the
while let line and the next two ones to this:
 guard let foundRange = self.elements.range(
 of: aString, options: options,
 range: searchRange, locale: locale)
 else { return nil }

17.	 Now we can listen to the error message; insert this at the end of the closure:
 return foundRange

18.	 There should be a warning on the first line of the body of the method. Click on it,
and then click on fix to change var searchRange to let searchRange.

Functional Programming and Lazy Operations

[162]

19.	 Now all that is left is to actually return something from the method. Click on
result to put the text marker inside it, and look in the Quick Help Inspector in
the top-right corner of the window (if it is not already open, press ⌘⌥2). You
should see the type of the sequence there. Click on UnfoldSequence to view the
documentation:

20.	 Go to the bottom of the documentation page, where it says this:
Conforms To IteratorProtocol, Sequence

UnfoldSequence performs its operations lazily and internally, but since it does not
conform to LazySequenceProtocol, other operations on it like map and filter
are not lazy. Since we are adding a method to LazySequenceProtocol, we need to
make sure that any sequence we return also conforms to it. To do this, add .lazy
right after the closing brace of the closure, on the line below return foundRange.

Lesson 6

[163]

21.	 Place the text marker inside result again. In the top right corner, the type has
changed to this:
LazySequence<UnfoldSequence<Range<String.Index>, Range<String.Index>>>

Copy and paste it in as the return type of the method.

22.	 Replace let result = with return.
23.	 Verify that it builds.

Functional Programming and Lazy Operations

[164]

24.	 Go to the unit test file StringsExtraTests.swift, and insert the following below
the first unit test:
 func testAllRangesLazy() {
 let lazyString = string.lazy

 XCTAssertEqual(Array(lazyString.allRanges(of: "Line", options:
.caseInsensitive)).count, 2)
 XCTAssertEqual(Array(lazyString.allRanges(of: "Line")).count, 1)
 XCTAssertEqual(Array(lazyString.allRanges(of: "hsf")).count, 0)
 XCTAssertEqual(Array("LineLineLine".lazy.allRanges(of: "Line")).
count, 3)
 XCTAssertEqual(Array("lalalalalala".lazy.allRanges(of: "lala")).
count, 5)
 XCTAssertEqual(Array("llllllll".lazy.allRanges(of: "ll")).count, 7)
 XCTAssertEqual(Array(lazyString.allRanges(
 of: "li", options: .caseInsensitive, locale: .current).
map{string[$0]}).count, 2)
 XCTAssertEqual(Array(lazyString.allRanges(
 of: "li", options: [.caseInsensitive, .backwards], locale:
.current)).count, 2)
 }

Here, we extract all elements from the lazy sequences by wrapping them in arrays.

25.	 Run all unit tests (⌘U) and verify that they all pass.
And that's it. Congratulations!

Swifty Code
When learning a new programming language, you're not just learning syntax, built-in
libraries, tooling, terminology, formatting style, and so on. There is also a somewhat
vaguely defined idea of what constitutes good code, a way of performing some tasks that
fits well with the language and has evolved together with it over time. In Swift, such code
is often referred to as Swifty code. This is in no way a well-defined term, and experts in the
language may disagree on some points. Here, we will only cover things where there seems
to be a consensus. The list is by no means exhaustive, and there are exceptions to many of
these.

Lesson 6

[165]

Many of these points are covered in Apple's official guidelines (https://swift.org/
documentation/api-design-guidelines/). We strongly recommend reading it; it's a
fairly short page and a very easy read.

Naming
Names of types and protocols are in UpperCamelCase. Everything else is in
lowerCamelCase. This makes it easy to tell values and types apart.

Try to name functions and their parameters so that they form English phrases when called.
So, instead of this:

x.insert(y, position: z)
x.subViews(color: y)
x.nounCapitalize()

Do this:

x.insert(y, at: z)
x.subViews(havingColor: y)
x.capitalizingNouns()

Functions returning Booleans should read well in an if statement:

if x.isEmpty {...}
if line1.intersects(line2) {...}

Methods that are mutating or have other side effects should read like commands:

print(x), x.sort(), x.append(y)

If this isn't possible because the operation is best described by a noun, prepend form
instead:

y.formUnion(z), c.formSuccessor(&i)

Append ed or ing to methods that return a new value instead of mutating:

Mutating Nonmutating
x.sort() z = x.sorted()

x.append(y) z = x.appending(y)

Functional Programming and Lazy Operations

[166]

For nouns, just use the noun on its own for the non-mutating version:

Mutating Nonmutating
y.formUnion(z) x = y.union(z)

c.formSuccessor(&i) j = c.successor(i)

Organizing Code
Avoid free functions, and place them where they belong. A function that processes text
should be placed in an extension on StringProtocol (so it can be used by both strings and
substrings). If the function doesn't take a value as input, make it static.

Group methods and properties that belong together in one extension. For example, if
you are adding protocol conformance to a type, group everything that is required by that
protocol together in one extension.

If you have a function that is only going to be used from one other function, place it inside
that function. This makes it clear as to why it exists.

Miscellaneous
Don't put semicolons at the end of lines. That is pointless in Swift. You can, however, use
a semicolon to write two statements on one line, but that is not something you should do
very often.

Languages without optionals have various ways of signaling the absence of a value: "" for
strings, -1 for positive integers, null for objects, and so on. Swift, thankfully, only has one
– nil. Always use optionals if a value can be empty.

Use Int for most integers, even if you only need positive values or smaller values that can
fit in Int8, Int16, or Int32. Otherwise, you will have to do a lot of conversions since Swift
does not do this automatically, not even when it is guaranteed to be safe.

Unless the order is significant, place a parameter taking a closure last in the function
definition so that it can be used with trailing closure syntax. Place parameters with default
values second to last.

Put underscores in long numeric literals, so they are easier to read:

1_000_000, 0.352_463

Lesson 6

[167]

If you need to change a value after you have returned it, use this code:

let oldvalue = value
value += 1
return oldvalue

Use defer instead:

defer { value += 1 }
return value

Writing Swifty Code
Finally, we're ready to write Swifty code. Here is the step to do so:

1.	 Rewrite the following code to be more Swifty, using the guidelines mentioned
previously:
/// An immutable entry in an error log.
struct LogError {
 var header: String
 let errorMessage: String

 init(header: String = "", errorMessage: String) {
 self.header = header
 self.errorMessage = errorMessage;
 if header.isEmpty {
 self.header = " ::Error::errorCode::"
 }
 }
}

LogError(errorMessage: "something bad")
LogError(header: "head", errorMessage: "something bad")

Here is the solution:

/// An immutable entry in an error log.
struct ErrorLogItem {
 let header: String
 let errorMessage: String

 init(errorMessage: String, header: String? = nil) {
 // Only if empty strings are invalid as headers.
 precondition(header != "", "A header cannot be empty.")

Functional Programming and Lazy Operations

[168]

 self.header = header ?? " ::Error::errorCode::"
 self.errorMessage = errorMessage
 }
}

ErrorLogItem(errorMessage: "something bad")
ErrorLogItem(errorMessage: "something bad", header: "head")

This ends our brief journey into code naming and organization, or in other words, how to
write code in the Swifty way.

Summary
In this lesson, we learned about the functional operations filter, map, flatMap, and
reduce. Then, we learned about lazy operations and a few ways of creating them. Finally,
we learned characteristics of good Swifty code.

The last three lessons of this course have been focused on the Swift Standard Library. We
began with learning about the three main generic collections: Arrays, Sets, and Dictionaries,
and added some useful methods to them. We also created our own collection: CountedSet.
Then, we learned about text handling in Swift and working with Foundation, and
added some useful String methods. We also looked at functional programming and lazy
operations.

This entire course is designed to be a thorough introduction to Swift for programmers who
are new to the language. We hope you have found it useful and welcome you as a fellow
Swift programmer.

Lesson 6

[169]

Further Study
Apple's own books on Swift programming (https://itunes.apple.com/no/book-
series/swift-programming-series/id888896989?mt=11) are very well-written and
highly recommended. So are the books from the no-longer-appropriately-named objc.io
(https://www.objc.io/books/).

Challenge
For a final challenge, here is what you can do after the book. The Standard Library has
methods for splitting a string over a single character, or a function that takes a single
character and returns a Boolean. However, it doesn't have any methods for splitting a string
over a substring, or doing it lazily.

Create a new method, which can be used on lazy strings and substrings, and takes a
separator (String) and optionally String.CompareOptions and Locale, and returns a lazy
sequence of the ranges between each occurrence of the separator in the original string/
substring.

https://itunes.apple.com/no/book-series/swift-programming-series/id888896989?mt=11
https://itunes.apple.com/no/book-series/swift-programming-series/id888896989?mt=11
https://www.objc.io/books/
https://www.objc.io/books/

Functional Programming and Lazy Operations

[170]

There are several ways of achieving this. The following hints describe one solution which
uses some of the methods we have created in this course. Try and see if you can complete
this by using as few hints as possible.

Hints:

•	 We can find the ranges of the separators first, and then invert them to get the ranges
of the spaces between the separators.

•	 Use the lazy allranges method we created in Lesson 6.
•	 Break up the lowerBound and upperBound of the ranges of the separators into a

sequence of indices.
•	 Create a new sequence, still lazy, from the start index of the original string/

substring, the indices from the previous hint, and the end index.
•	 There is no built-in way of joining sequences of different types lazily together. Here

is one way:
private func joinSequences<S1,S2>(_ s1: S1, _ s2: S2)
 -> UnfoldSequence<S1.Element, (Optional<S1.Iterator>, S2.Iterator)>
 where S1:Sequence, S2:Sequence, S1.Element == S2.Element {
 return sequence(state: (Optional(s1.makeIterator()),
s2.makeIterator()))
 { seqs -> S1.Element? in
 guard let _ = seqs.0 else { return seqs.1.next() }
 return seqs.0?.next()
 ?? { seqs.0 = nil; return seqs.1.next() }()
 }
}

public func +<S1,S2>(s1: S1, s2: S2)
 -> UnfoldSequence<S1.Element, (Optional<S1.Iterator>, S2.Iterator)>
 where S1:Sequence, S2:Sequence, S1.Element == S2.Element {
 return joinSequences(s1, s2)
}

public func +<S1,S2>(s1: S1, s2: S2)
 -> LazySequence<UnfoldSequence<S1.Element, (Optional<S1.Iterator>,
S2.Iterator)>>
 where S1:Sequence, S2:LazySequenceProtocol, S1.Element == S2.Element {
 return joinSequences(s1, s2).lazy
}

public func +<S1,S2>(s1: S1, s2: S2)

Lesson 6

[171]

 -> LazySequence<UnfoldSequence<S1.Element, (Optional<S1.Iterator>,
S2.Iterator)>>
 where S1:LazySequenceProtocol, S2:Sequence, S1.Element == S2.Element {
 return joinSequences(s1, s2).lazy
}

•	 Take the new sequence, flatten it if necessary, and group two and two indices
together.

•	 Use the group2 method from Lesson 6.
•	 Create ranges from these grouped indices.
•	 Return this as a lazy sequence.

Index

Symbols
@discardableResult

about 74
using 74

A
argument labels

adding, to function 69
excluding, from function 70

arithmetic operators
remainder operator 38
standard arithmetic operators 37
unary minus operator 38

arrays
about 99
ArraySlice 103
index 101
working with 99, 101, 106-109

ArraySlice 103, 104

assignment operator
about 37
compound assignment operator 38

B
BidirectionalCollection 100

bitwise operators 41

Boolean data type 25

Bool value 25

branching
about 44
condition lists 46, 47
if statement 45
switch statement 49

break keyword
about 50
using 50

C
CamelCase

about 140
using 140, 141

Character data type
about 25
Character literal, constructing 26
values, assigning 26

classes
about 89
defining 90
versus, structs 89

closed range operator 42

closures 79, 80

code
converting, from if to switch 54, 55

comparison operators
about 38
equality 39
inequality 39

compound assignment operators 38

conditional unwrapping 16, 17

[174]

continue statement
using 60

CountedSet 117

customer class
creating 91-94, 96

customer struct
creating 91-96

D
data types, Swift

about 19
Boolean 25
Character 25
numeric data types 20
string 27
working with 28, 29

dictionaries
about 115
using 117-120
working with 116, 117

do…catch
about 83
implementing 83

E
endIndex 101

enum
about 30
basic syntax 30
raw values 31
using 32, 33

enumerations. See enum; See enum

Equatable 110

error handling
about 83
do…catch statement 83
do without catch, using 85
guard statement 85, 87

multiple catch blocks 84

exception handling 87, 88

F
fallthrough keyword 50

filter method
about 145
using 146

flatMap method
about 148
using 149

force unwrapped variable 13

force unwrapping 15

for…in statement
about 56, 57
array objects with index, iterating over 58
break control transfer statement 59
continue control transfer statement 59
for loop where clause 58
objects, iterating over 57

functional methods
about 145
filter 145
flatMap 148
map 146
reduce 150

functional programming
about 143
implementing 151, 152

function attributes 75, 76

functions
about 68
argument labels, adding 69, 70
argument labels, excluding 70, 71
as parameters 79
basic syntax 68
closures 80
creating, for receiving content from
asynchronous web service call 81, 82

[175]

defining 68, 69
@discardableResult, using 74
function attributes 75, 76
implementing 72
inout parameters 77, 78
parameter default values, providing 71
recursion 78
values, returning from 73
variadic parameters 76

function type 144, 145

G
guard statement

about 85
using 86, 87

H
half-open range operator 42

Hashable 110

Hello, World program 3, 4, 6

I
if statement

about 44, 45
implementing 46
implementing, with multiple conditions 46
optional unwrapping 47

index type, arrays
about 101
common operations, utilizing 102

indices of character, string
identifying 127

infer data type 8

inout parameters 77, 78

L
lazy operations

about 152
creating 156
implementing 154
lazy sequence 152, 153
sequence functions 156, 157
Sequence internals 155

lazy version, of method
implementing 158-162, 164

logical operators 40

loops
about 55
for…in statement 56, 57
implementing 63, 64
while loop 61

M
map method

about 146
using 146, 147

multiple catch blocks 84

MutableCollection 100

N
nil-coalescing operator 41

NSRange
converting, to Range 139, 140

numeric data types
about 20
appropriate numeric data type, selecting 21
built-in numeric data types 20
floating-point numbers, assigning 21
floating-point numbers, declaring 21
Integer variables, assigning 21
Integer variables, declaring 21
Int on 64-bit platform, versus 32-bit patform 20
numeric literal grouping 22

[176]

numeric type conversions 22, 23
working with 23, 24

O
one-sided range operator 42

optional
about 12, 13
conditional unwrapping 16, 17
declaring 13
force unwrapping 15
nil values 14
values, accessing 15
working with 14

R
RandomAccessCollection 101

range operators
about 41
closed range operator 42
half open range operator 42
one-sided range operator 42

RangeReplaceableCollection 100

ranges, of substring
finding 133

recursion 78

reduce method
about 150
using 150

S
SetAlgebra 110

sets
about 109
combining 112
comparing 113
duplicates, removing from sequence 113, 114
working with 112

slices
creating 105
creating, range operators used 105

startIndex 101

string
about 27, 121
Characters, extracting 28
common operations, implementing 131
concatenation 27
creating 129
indices of character, identifying 127
instantiating 27
length, obtaining 28
number of spaces, counting 134-136
ranges of substring, finding 133, 134
text operations, implementing 133
using 128

string fundamentals
about 121
character 122
collection 123, 124
debugging 126
index 125, 126

String index
working with 126

StringProtocol 137

structs
about 89
defining 90

substrings
about 136
creating 138
NSRange, converting to Range 139, 140
parsing 139

Swift
about 1
basic language syntax 2, 3
branching 44
constants 7
data types 19
Hello, World program 3, 4, 6

[177]

object-oriented features 88
object-oriented principles 89
optional 12
program structure 2, 3
type inference 8
variables 6

Swift collections
about 97, 98
arrays 99

Swift guard statement 17, 18

Swift operators
about 36
arithmetic operators 37
assignment operator 37
bitwise operators 41
categories 36
comparison operators 38
logical operators 40
nil-coalescing operator 41
range operators 41
ternary conditional operator 40
working with 43

Swift Standard Library
URL 97

Swift variables
declaring 6
variable naming 8, 9
versus, Swift constants 7
working with 10, 18, 19

Swifty code
about 164
code organization 166
miscellaneous 166
naming 165, 166
writing 167, 168

switch statement
about 49
break keyword 50
fallthrough keyword 50
multiple patterns, matching in single case 52
optionals, evaluating with 53
syntax rules 50

where statement, using within case 52, 53

T
ternary conditional operator 40

try? keyword
using 85

tuples
about 10, 11
creating 12

type cast
force unwrapping 15

type inference 8

type-safe language 8

U
UnfoldSequence 162

V
variable naming 9

variables. See Swift variables; See
Swift variables

variadic parameters 76

W
while loop

about 61
repeat…while loop 62, 63
syntax rules 62
using 62

	Cover

	Title Page

	Preface
	Swift Basics
	Swift Program Structure
	Hello, World!

	Swift Variables and Constants
	Declaring Swift Variables
	Variables Versus Constants
	Type Inference
	Variable Naming
	Working with Variables

	Tuples
	Creating a Tuple

	Optionals
	Declaring an Optional
	Working with Optionals
	Optional nil Values
	Accessing Optional Values
	Force Unwrapping an Optional
	Conditionally Unwrapping Optionals
	The Swift guard Statement

	Activity B: Variable Summary

	Swift Data Types
	Numeric Data Types
	Int on 64-Bit Versus 32-Bit Platforms
	Built-In Numeric Data Types
	Choosing the Appropriate Numeric Data Type
	Declaring and Assigning Integer Variables
	Declaring and Assigning Floating Point Numbers
	Numeric Literal Grouping
	Numeric Type Conversions

	Boolean
	Character
	Assigning a Character
	Constructing a Character Literal

	String
	Instantiating a String
	String Concatenation
	Extracting Characters
	String Length

	Activity C: Data Type Summary

	Enums
	Basic Enum Syntax
	Enum with Raw Values
	Activity D: Using Swift Enums

	Summary

	Swift Operators and Control
Flow
	Swift Operators
	Assignment Operator
	Arithmetic Operators
	Standard Arithmetic Operators
	Remainder Operator
	Unary minus Operator
	Compound Assignment Operators

	Comparison Operators
	Equality
	Inequality
	Comparison between Two Values

	Ternary Conditional Operator
	Logical Operators
	Bitwise Operators
	Nil-Coalescing Operator
	Range Operators
	Closed Range Operator
	Half-Open Range Operator
	One-Sided Range Operator

	Activity A: Operators

	Branching
	The if Statement
	Condition Lists
	Optional Unwrapping with if

	The switch Statement
	switch Statement Rules
	The break Keyword
	The fallthrough Keyword
	Matching Non-Scalar Values
	Multiple Patterns in a Single Case
	Using the where Statement within case
	Evaluating Optionals with a switch Statement

	Activity B: Converting Code from if to switch

	Loops
	The for…in Statement
	Iterating over Objects
	Iterating over Array Objects with index
	The for Loop where Clause
	The break Control Transfer Statement
	The continue Control Transfer Statement

	The while Loop
	The repeat…while Loop

	Activity C: Implementing Loops

	Summary

	Functions, Classes, and Structs
	Functions
	Defining a Function
	Argument Labels
	Excluding Argument Labels
	Parameter Default Values
	Activity A: Implementing a Function
	Returning Values from Functions
	Using @discardableResult
	Function Attributes
	Variadic Parameters
	inout Parameters
	Recursion
	Functions as Parameters
	Closures
	Creating a Function to Receive Content from an Asynchronous Web Service Call

	Error Handling
	The do…catch Statement
	Multiple catch Blocks
	Using do without catch
	The guard Statement
	Activity B: Exception Handling

	Object-Oriented Features
	Object-Oriented Principles
	Classes Versus Structs
	Defining Classes and Structures
	Activity C: Creating a Customer Struct and Class

	Summary
	Challenge

	Collections
	Arrays
	Working with Arrays
	Index
	Utilizing Common Operations with Index

	ArraySlice
	Creating Slices
	Creating Slices Using Range Operators

	Activity A: Working with Arrays

	Sets
	Working with Sets
	Combining Sets
	Comparing Sets
	Activity B: Removing Duplicates from a Sequence

	Dictionaries
	Working with Dictionaries
	Activity C: Using Dictionaries

	Summary

	Strings
	String Fundamentals
	Character
	Collection
	Index
	Working with String Index

	Debugging
	Activity A: All Indices of a Character

	Using Strings
	Creating Strings
	Common Operations
	Implementing Extra Text Operations on a String

	Activity B-1: All Ranges of a Substring
	Activity B-2: Counting Words, Sentences, and Paragraphs

	Substring
	Creating Substrings
	Parsing Strings

	Converting NSRange to Range
	Activity C: CamelCase

	Summary

	Functional Programming and Lazy Operations
	Function Type
	Functional Methods
	filter
	Using the filter Method

	map
	Using the map Function

	flatMap
	Using the flatMap Function

	reduce
	Using the reduce Function

	Activity A: Implementing Functional Programming

	Lazy Operations
	Lazy Sequences
	Sequence Internals
	Creating Lazy Operations
	sequence(first:next:)
	sequence(state:next:)

	Activity B: Implementing a Lazy Version of a Method

	Swifty Code
	Naming
	Organizing Code
	Miscellaneous
	Writing Swifty Code

	Summary
	Further Study
	Challenge

	Index

