

 2

Writing Native Mobile

Apps in a Functional

Language Succinctly

By
Vassili Kaplan

Foreword by Daniel Jebaraj

 3

Copyright © 201 8 by Syncfusion, Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

Important licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a

registration form.

If you obtained this book from any other source, please register and downl oad a free

copy from www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information

provided.

The authors and copyright holders shall not be liable for any claim, damages, or any

other liability arising f rom, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET

ESSENTIALS are the registered trademarks of Syncfusion, Inc.

Technical Reviewer: Ed Freitas

Copy Editor: Courtney Wright

Acquisitions Coordinator: Tres Watkins, content development manager, Syncfusion,

Inc.

Proofreader: Darren West, content producer, Syncfusion, Inc.

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

 4

Table of Contents

The Story Behind the Succinctly Series of Books .. 7

About the Author ... 9

Chapter 1 Introduction ...10

What will be covered in this book?..10

Advantages of using CSCS for mobile ..10

ñHello, World!ò in CSCS ..11

Customizable scripting in C# ..14

An example of implementing a CSCS function ...15

Summary ..16

Chapter 2 Project Structure and Design ...17

Structure of a CSCS mobile project ..17

Where CSCS code executes ..19

Summary ..25

Chapter 3 Placing Widgets on the Screen ..27

Layout concepts in CSCS ...27

Locations in CSCS ...28

Adding widgets ...30

Implementing device orientation changes ...33

Example: Currency Convertor ..35

Summary ..43

Chapter 4 Creating Custom Widgets ..44

Adding a custom combo box ..44

Autocomplete with a trie data structure ...48

Summary ..55

 5

Chapter 5 Adding Syncfusion Controls ..56

Adding Syncfusion to the CSCS project ...56

Stepper or Numeric Up Down ...60

QR barcode ..63

Barcode 39 ...64

Picker ...65

Digital Gauge ...68

Circular Gauge ...69

Calendar...70

Image Editor ...71

Busy Indicator ..72

Data Grid ..74

Spline Chart ...76

Doughnut and Semi-Doughnut Charts ..77

Summary ..78

Chapter 6 Adding PDF, Word, and Excel Functionality from Syncfusion to CSCS79

Adding PDF file creation to CSCS ..79

Adding Microsoft Word file creation to CSCS ...83

Adding Microsoft Excel file creation to CSCS ...87

Summary ..93

Chapter 7 Text-To-Speech and Speech Recognition in CSCS ..94

Text-to-speech in CSCS ...94

Speech recognition in CSCS ..96

An example of text-to-speech and speech recognition.. 100

Summary .. 102

Chapter 8 In-App Purchases in CSCS .. 103

 6

Setting up In-App Purchases for iOS .. 103

Setting up In-App Billing for Android ... 104

Implementation ... 105

CSCS example ... 106

Summary .. 109

Chapter 9 Adding Mobile Advertising and Advanced Topics ... 110

Adding Google AdMob to CSCS ... 110

Debugging and unit testing ... 112

Localization .. 115

Settings or user defaults ... 116

Swipe, long click, and drag and drop .. 116

Scheduling events .. 117

Asynchronous programming in CSCS .. 118

Calling native code from CSCS .. 118

Conclusion ... 119

Appendix ... 120

Currently implemented CSCS functions ... 120

 7

The Story Behind the Succinctly Series
 of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components
for the Microsoft platform. This puts us in the exciting but challenging position
of always being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about
every other week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books
are being published, even on topics that are relatively new, one aspect that continues to
inhibit us is the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web
for relevant blog posts and other articles. Just as everyone else who has a job to do and
customers to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical
books that would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most
topics can be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isnôt
everything wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our
vision. The book you now hold in your hands, and the others available in this series, are
a result of the authorsô tireless work. You will find original content that is guaranteed to
get you up and running in about the time it takes to drink a few cups of coffee.

S

 8

Free forever

Syncfusion will be working to produce books on several topics. The books will always
be free. Any updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and
broader frameworks than anyone else on the market. Developer education greatly helps
us market and sell against competing vendors who promise to ñenable AJAX support
with one click,ò or ñturn the moon to cheese!ò

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them
to us at succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand
the topic of study. Thank you for reading.

Please follow us on Twitter and ñLikeò us on Face-book to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
https://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

 9

About the Author

Vassili Kaplan is a former Microsoft Lync developer. He has been studying and working in a few
countries, such as Russia, Mexico, the United States, and Switzerland.

He has a B.S. in Applied Mathematics from Instituto Tecnológico Autónomo de México, and an
M.S. in Applied Mathematics with Specialization in Computational Sciences from Purdue
University, West Lafayette, Indiana.

He currently lives with his wife and two kids in Zurich, Switzerland and works as a freelancer for
various Swiss banks. He is mostly programming in C++, C#, Python, and CSCS.

In his spare time, he works on the CSCS language, which is the topic of this book. His other
hobbies are traveling, biking, badminton, and enjoying a glass of good red wine.

You can contact him either at vassilik@gmail.com or at his website: http://www.iLanguage.ch.

mailto:vassilik@gmail.com
http://www.ilanguage.ch/

 10

Chapter 1 Introduction

ñCode is like humor. When you have to explain it, it is bad.ò
Cory House

What will be covered in this book?

In this book, we are going to see how to develop native mobile apps in a customizable scripting
language. In my previous e-book, Implementing a Custom Language Succinctly, I showed how
to create this customizable language. For brevity, I called this language CSCS (Customizable
Scripting in C#). My previous e-book is not a prerequisite for this book, although it is a ñnice-to-
have,ò since it has a few details about the CSCS language that we will not cover in this book.

Hereôs what weôll cover:

¶ How to write native mobile apps for iOS and Android in a scripting language.
¶ How to place widgets on the screen programmatically (no storyboards, XML, or XAML

neededðitôs all in a simple scripting language).
¶ How to add custom widgets to CSCS.
¶ How to implement basic functionality in CSCS: text-to-speech and voice recognition, in-

app purchases, scheduling events, etc.
¶ How to add other Xamarin Frameworks and NuGet packages that can be used in CSCS.
¶ How to do Unit Testing in CSCS.
¶ How to call native C# code from CSCS and get the results back.
¶ Examples of complete apps written in pure CSCS.

The base developing platform will be Microsoft Visual Studio (either on Windows or on macOS)
with Xamarin. I personally use the free one, Visual Studio Community 2017 on macOS.

The CSCS language does not have to be used exclusively for developing a mobile app. It can
also be used as a complement to facilitate creating common widgets, their placements, and any
other functionalityðCSCS is 100 percent customizable.

You can also write the whole app in CSCSðI did it with the iLanguage app. The same CSCS
code is used for both iOS and Android. The code for iLanguage app is in the source code
downloadðthe entry point is the iLanguage.cscs file, which imports a few other CSCS files.

I also wrote an app to test CSCS scripts on iOS and on Android. You can test all of the scripts
that you see in this book and also experiment with your own. The app itself is obviously written
in CSCS as well. The source code is in the cscs.cscs file.

Advantages of using CSCS for mobile

Why should you use a scripting language to write an app?

https://www.syncfusion.com/resources/techportal/details/ebooks/implementing-a-custom-language
https://itunes.apple.com/app/ilanguage/id968947584
https://play.google.com/store/apps/details?id=ch.ilanguage.android
https://github.com/vassilych/mobile
https://github.com/vassilych/mobile
https://itunes.apple.com/app/cscs-native-scripting/id1358886733
https://play.google.com/store/apps/details?id=ch.cscs.vk

 11

¶ There is much less coding. As you will see in this book, it takes only a very few lines of
code to place a widget on the screen and populate it with some data and images.

¶ The same code is used for both iOS and Android. You will also see that other platforms,
like Windows Phone, can be easily added to CSCS as well.

¶ Even though Xamarin.Forms can share up to 75 percent of common code between iOS
and Android, or even more if only common controls are used, CSCS goes further than
that because it is easier to add features shared by multiple platforms. Once you have C#
wrappers over the native code, you use same CSCS code to call them behind the
scenes for all platforms.

¶ Quicker debugging: no need to recompile the code when debugging the app, since the
changes are done in the scripting part, not in C#.

¶ The CSCS parser is not only open source, but also included with every project, so it is
easy to modify the existing functionality or add a new one on the flyðcompare this with
C# or Python.

ñHello, World!ò in CSCS

Code Listing 1 contains CSCS code to create a few labels, a button, and an event triggered
when the user clicks on a button.

Code Listing 1: ñHello, World!ò in CSCS

AutoScale();
SetBackgroundColor("cyan");

locClickme = GetLocation("ROOT", "CENTER", "ROOT", "CENTER");
AddButton(locClickme, "buttonClickme" , "Click me", 200, 80);
AddAction(buttonClickme, "clickme_click");
SetFontSize(buttonClickme, 12);

locVersionLabel = GetLocation(buttonClickme, "ALIGN_LEFT",
 button Clickme, "TOP");
AddLabel(locVersionLabel, "versionLabel" , "" , 360, 60);
SetFontSize(versionLabel, 12);

locSizeLabel = GetLocation(buttonClickme, "CENTER",
 buttonClickme, "BOTTOM");
AddLabel(locSizeLabel, "sizeLabel" , "" , 360, 60) ;
SetFontSize(sizeLabel, 10);

locOrientationLabel = GetLocation(buttonClickme, "RIGHT",
 buttonClickme, "CENTER");
AddLabel(locOrientationLabel, "orientationLabel" , "" , 160, 80);
SetFontSize(orientationLabel, 10);

clicks = 0;
function clickme_click(sender, arg)
{
 clicks++;

 12

 if (clicks == 1) {
 SetText(versionLabel, "Hello, " + _DEVICE_INFO_ + ", " +
 _VERSION_INFO_, "left");
 } el if (clicks == 2) {
 SetText(sizeLabel, "Size: " + DisplayWidth + "x" + DisplayHeight +
 ". Locale: " + GetDeviceLocale(), "center");

 } el if (clicks == 3) {
 SetText(orientationLabel, "Orientation: " + Orientation, "center");
 } else {
 SetText(buttonClickme, "Clicks: " + clicks, "center ");
 }
}

See the results of running the ñHello, World!ò script on actual devices in Figure 1. The image on
the left shows it running on an iPhone 6, and the one on the right shows it running on a Wiko
Lenny4 Android phone.

Figure 1: Running the "Hello, World!" Script for iPhone (left) and Android (right)

 13

Letôs analyze Code Listing 1. AutoScale() scales the widgets according to the screen

resolution.

 Tip: Using the AutoScale() function, the width of a widget will be twice as large on
a device with a width of 960 pixels, than on a device with a width of 480 pixels.

You can also use the auto-scale functionality per widget. We will see more details about this
function in the next chapter.

SetBackgroundColor("cyan") will change the background color on the running device. There

is also a SetBackground(imageName) function, which sets an image as a background.

The next two lines create a location and a button, which will be placed in that location:

locClickme = GetLocation("ROOT", "CENTER", "ROOT", "CENTER");
AddButton(locClickme, "buttonClickme" , "Click me", 200, 80);

The general signature for creating a location on the screen is the following:

GetLocation (HorizontalReference, Placement X,
 Vertical Reference , Placement Y);

Horizontal or vertical references are just some other widgets on the screen, or a ROOT, meaning

the main screen.

To connect an action to the event of clicking on a button, the following function is used:

AddAction(buttonClickme, "clickme_click");

The callback function, in our case clickme_click , always has two parameters, a sender and

an argument. As you can see, this CSCS concept has been borrowed from C#, as have a few
others.

The clickme_click () function has a few calls to other functions, namely to:

_DEVICE_INFO_, _VERSION_INFO_, DisplayWidth , DisplayHeight , GetDeviceLocale , and
Orientation .

All of these functions are implemented in C#. None of them require a parameterðin this case,
the opening and closing parentheses after the function name are optional. We will talk about the
implementation of some of these functions later on.

 14

Customizable scripting in C#

Syntax-wise, CSCS is a mixture of Python and C#. But CSCS is not object-oriented, even
though it has some features of object-oriented languages. One of them is polymorphism: there
are many CSCS functions that accept different widgets as arguments, like SetFontColor() ,

SetValue() , SetText() , and many others. We will talk about these functions later on.

The CSCS language is implemented in C# and it is based on the split-and-merge algorithm.
Letôs briefly review the split-and-merge algorithm, which forms a basis of CSCS. You can check
out the complete description here.

The algorithm consists of two steps. In the first step, the string containing an expression is split
into a list of so-called ñvariables.ò Each variable consists of a number or a string and an action
that must be applied to it. The numbers are internally represented as doubles, so in essence,
they can be integers or Booleans.

Actions are different for numbers and strings. For numbers, the actions can be all possible
operations we can do with the numbers, for example, +, ï, *, / or %, Boolean operators (!, &&,
||), and bitwise operations (&, |, ^). For strings, the actions can be a + (string concatenation) or
Boolean comparisons. For convenience, we denote the action of the last variable in the list as).

As soon as we get any function or an opening parentheses in the expression string, we
recursively apply the whole split-and-merge algorithm to the expression in parentheses or to a
function, and then replace them with the calculated result.

At the end of the first step, we are going to have a list of variables, each one consisting of either
a number or a string, and an action that will be applied.

In the second step, we merge the list of variables created in the first step. This list is merged
one by one, starting from the first variable in the list. Merging means applying the action of the
left variable to the values of the left and right variables. The resulting variable will have the same
action as the right variable.

The variables can only be merged if the priority of the action of the left variable is greater than or
equal to the priority of the action of the right variable (for instance, the priority of multiplication is
greater than the priority of addition). If two variables cannot be merged, we temporarily move to
the next-right variable, in order to try to merge it with the variable next to it, and so on,
recursively. As soon as the right variable has been merged with the variable on its right, we
return to the original, left variable, and try to re-merge it with the newly created right variable.

Eventually, we will be able to merge the whole list into one variable, since sooner or later we will
reach the last variable of the list that has the lowest priority, and therefore, can be merged with
any variable on its left. The value of the remaining variable will be the final result.

https://www.syncfusion.com/resources/techportal/details/ebooks/implementing-a-custom-language

 15

An example of implementing a CSCS function

Letôs see an example of the implementation of the _DEVICE_INFO_ function that you saw in

Code Listing 1. The expected outcome of this function is the name of the device being used (for
example, iPhone 6, or Wiko Lenny4).

There are just two steps in adding a new function to CSCS:

1. Implement the Evaluate() method of a class deriving from the ParserFunction class.
2. Register the class implemented in the previous step with the parser.

The implementation is different for iOS and Android. Code Listing 2 has an Android
implementation. The iOS implementation is unfortunately, and surprisingly, much more
complicated, at least as of iOS 11.2, and will be skipped (the curious reader can check it out in
the accompanying source code, which can be downloaded).

Code Listing 2: Implementation of the GetDeviceInfoFunction Class for Android

class GetDeviceInfoFunction : ParserFunction
{
 protected override Variable Evaluate(ParsingScript script)
 {
 string deviceName = Android.OS. Build .Brand;
 string model = Android.OS. Build .Model;
 if (!model.Contains("Android")) {
 // Simulators have "Android" in both, Brand and Model.
 deviceName += " " + model;
 }

 return new Variable (deviceName);
 }
}

Once a class, deriving from the Pars erFunction class, is implemented, we can register it with

the parser as follows:

ParserFunction .RegisterFunction("_DEVICE_INFO_",
 new GetDeviceInfoFunction ());

The general signature is:

ParserFunction .RegisterFunction(funct ionName, aParserFunction);

This way you can register any function with the parser. We are going to see many more
examples of this later on in this book.

 16

Summary

In this chapter we saw the split-and-merge algorithm and how it is used to implement a typical
CSCS function. This algorithm is used behind the scenes in all CSCS functions, but you do not
have to know it to use it directlyðitôs all done behind the scenes by the CSCS parser.

In the next chapter, we are going to see the overall Xamarin project structure that can be used
for customized scripting with CSCS.

 17

Chapter 2 Project Structure and Design

ñDesign is how it works.ò
Steve Jobs

Structure of a CSCS mobile project

Figure 2 contains a screenshot of a common Xamarin project using CSCS.

Scripting.Shared is a shared project containing the code common to both Android and iOS. In
particular, it contains all the files needed for parsing the CSCS code. Parsing.cs contains the
implementation of the split-and-merge algorithm.

ParserFunction.cscs contains the implementation of the base class ParserFunction . When

adding a new functionality to CSCS, a new class will override the ParserFunction class (see

Code Listing 2 in the previous chapter).

Functions.Flow.cs, Functions.Math.cs, and Functions.OS.cs contain the implementation of
the basic functions, not related to the mobile devices (operations with strings, loops, exceptions,
mathematical functions, etc.). Interpreter.cs is a class that glues together parsing functions with
the parsing flow.

The Shared.Resources folder contains resources used by both platforms. In particular, it
contains the CSCS scriptsðI placed them directly under the Resources folder. For example, the
code mentioned in Code Listing 1 is located in the Resources\fhello.cscs file. The Android and
iOS projects have links to this file.

The drawable subfolder contains all the images used by both platforms. Each particular project,
iOS, or Android, has its own Resources folder with links to the shared projectsðtherefore,
changes in the shared folder will be automatically propagated to the iOS and Android folders.

You can also set up the project structure differently, for example, with each project having its
own set of images of different sizes, depending on the screen size.

The functions common to iOS and Android CSCS are in the CommonFunctions.cs file in the
shared project folder.

If iOS and Android code is different, the implementations are in the iOSFunctrions.cs file for
iOS and in the DroidFunctions.cs file for Android, respectively.

If the code is different on both platforms, but the differences are minimal, you can still have it in
the CommonFunctions.cs file using the preprocessor macros. See Code Listing 3 for an
example of extracting the version number for an Android and an iOS device.

 18

Code Listing 3: Implementation of the GetVersionNumberFunction Class

class GetVersionNumberFunction : ParserFunction
{
 protected override Variable Evaluate(ParsingScript script)
 {
#if __ANDROID__
 string strVersion = Android.OS. Build . VERSION.Release;
#elif __IOS__
 string strVersion = UIKit.UIDevice.CurrentDevice.SystemVersion;
#endif
 return new Variable (strVersion);
 }
}

Figure 2: General Structure of a CSCS Xamarin Project (On macOS)

 19

Where CSCS code executes

The actual execution of the CSCS code happens inside of the CommonFunctions.RunScript()

method shown in Code Listing 4. This method also registers all the common functions with the
parser.

Code Listing 4: The Implementation of the RunScript Method

public static void RunScript(string fileName)
{
 Regist erFunctions();
 string script = FileToString(fileName);

 Variable result = null ;
 try {
 result = Interpreter .Instance.Process(script);
 } catch (Exception exc) {
 Console .WriteLine("Exception: " + exc.Message);
 Console .WriteLine(exc.StackTr ace);
 ParserFunction .InvalidateStacksAfterLevel(0);
 throw ;
 }
}

public static void RegisterFunctions()
{
 ParserFunction .RegisterFunction("GetLocation" ,
 new GetLocationFunction ());
 ParserFunction .RegisterFunc tion("AddWidget" , new AddWidgetFunction ());
 // ... all other functions ...
}

CommonFunctions.RunScript() is called from CustomInit.InitAndRunScript() , which

initializes project-specific data and registers all project-specific widget types and all custom
functions with the parser. See Code Listing 5 for an example of such a method.

Code Listing 5: The Implementation of the CustomInit.InitAndRunScript Method

public static void Ini tAndRunScript()
{
 UIVariable .WidgetTypes.Add(new AdMob());
 UIVariable .WidgetTypes.Add(new SfWidget ());

 string fileName = " start .cscs" ;

 // All custom functions go her e ...
 ParserFunction .RegisterFunction("SfPdfNew" , new CreatePdf ());
 ParserFun ction .RegisterFunction("SfPdfOpen" , new OpenPdf());

 20

 ParserFunction .RegisterFunction("SfSetPdfText" , new SetPdfText ());
 ParserFunction .RegisterFunction("SfSetPdfImage" , new SetPdfImage ());
 ParserFunction .RegisterFunction("SfSetPdfLine" , new SetPdfLine ());
 ParserFunction .RegisterFunction("SfSetPdfPie" , new SetPdfPie ());
 ParserFunction .RegisterFunction("SfSetPdfFont" , new SetPdfFont ());
 ParserFunction .RegisterFunction("SfSavePdf" , new SavePdf());
 // ...

 CommonFunctions.RunScript(fileName);
}

In particular, it specifies that the start.cscs script will run. Note that you can import other

CSCS script files by calling the ImportFile() CSCS function from start.cscs, for example:

ImportFile(" sfhello .cscs");

 Tip: In this way you can have different apps with identical C# code but different
CSCS code. You just specify a different name when calling the ImportFile() function
in start.cscs. There are some examples of this in the accompanying source code.

Where in the workflow do we execute the CSCS script? The answer is different for iOS and
Android.

For Android, itôs a bit trickier than for iOS: we have to execute the script after the global layout
has been initialized so that the script not only can start adding widgets, but also has access to
all of the layout information, like sizes, orientation, main window parameters, and so on.

Unfortunately, itôs too early to run the CSCS script at the end of the MainActivity.OnCreate()

method, but fortunately, Android provides a way: we can register a Global Layout listener with a
ViewTreeObserver object.

We register it not at the end of the MainActivity.OnCreate () method, but at the end of the

MainActivity.OnResume() method, which is the best place according to the Android activity

lifecycle. See

Code Listing 6 for details.

Code Listing 6: Running a CSCS Script on Android

// MainActivity
bool m_scriptRun = false ;

protected override void OnResume()
{
 base.OnResume();
 if (!m_scriptRun) {
 ViewTreeObserver vto = TheLayout.ViewTreeObserver;
 vto.AddOnGlobalLayoutListener(new LayoutListener ());

https://developer.android.com/guide/components/activities/activity-lifecycle.html#alc
https://developer.android.com/guide/components/activities/activity-lifecycle.html#alc

 21

 m_scriptRun = true ;
 }
}

public class LayoutListener : Java.Lang. Object ,
 ViewTreeObserver . IOnGlobalLayoutListener
{
 public void OnGlobalLayout()
 {
 var vto = MainActivity .TheLayout.ViewTreeObserver;
 vto.RemoveOnGlobalLayoutListener(this);

 // Run CSCS Script here:
 CustomInit .InitAndRunScript();
 }
}

We use the Boolean variable m_scriptRun to make sure that the CSCS script is executed only

once, because we do not need to run the script every time the device orientation changes. In
this case, we run only specific functions responsible for widget placementðweôll see how to do
that in the next chapter.

 Note: Remove the m_scriptRun Boolean check if you want the script to run every
time the device orientation changes or the application comes back from the
background.

The situation is simpler in iOSðwe can execute the CSCS script from the
AppDelegate.FinishedLaunching() method.

In iOS, I created a custom view controller, with the method Run() , which actually runs the

CSCS script: see Code Listing 7.

Code Listing 7: Running CSCS Script on iOS

public void Run()
{
 // If there is no TabBar, move the tabs view down:
 OffsetTabBar();
 this .ViewControllerSelected += OnTabSelected;

 CustomInit .InitAndRunScript();

 if (m_selectedTab >= 0) {
 SelectTab(m_selectedTab);
 } else if (TabBar != null) {
 TabBar.Hidden = true ;
 }
}

 22

The base class for all of the widgets is UIVariable , which derives from the core CSCS variable

class. It has a common functionality for iOS and for Android. A fragment of this class is
described in

Code Listing 8.

Code Listing 8: A Fragment of the UIVariable Class

public class UIVariable : Variable
{
 public Action <string , string > ActionDelegate;
 public static List <UIVariable > WidgetTypes = new List <UIVariable >();
 protected static int m_currentTag;

 public enum UIType {
 NONE, LOCATION, VIEW, BUTTON, LABEL, TEXT_FIELD, TEXT_VIEW,
 PICKER_VIEW, PICKER_IMAGES,LIST_VIEW, COMBOBOX, IMAGE_VIEW,
 SWITCH, SLIDER, STEPPER, SEGMENTED, CUSTOM
 };

 public UIVariable(UIType type, string name = "" ,
 UIVariable refViewX = null ,
 UIVariable refViewY = null)
 {
 WidgetType = type;
 WidgetName = name;
 RefViewX = refViewX;
 RefViewY = refViewY;
 }

 public UIType WidgetType { get ; set ; }
 public string WidgetName { get ; set ; }
 public int Width { get ; set ; }
 public int Height { get ; set ; }
 public int X { get ; set ; }
 public int Y { get ; set ; }
 public int TranslationX { get ; set ; }
 public int TranslationY { get ; set ; }

 public st ring RuleX { get ; set ; }
 public string RuleY { get ; set ; }

 public UIVariable Location { get ; set ; }
 public UIVariable RefViewX { get ; set ; }
 public UIVariable RefViewY { get ; set ; }
 public UIVariable ParentView { get ; set ; }

 public double MinVal { get ; set ; }
 public double MaxVal { get ; set ; }

 23

 public double CurrVal { get ; set ; }
}

The iOSVariable class derives from UIVariable , and has a concrete implementation for iOS.

Its fragment is shown in Code Listing 9. Its Android equivalent is shown in Code Listing 10.

Code Listing 9: A Fragment of the iOSVariable Class

public class iOSVariable : UIVariable
{
 public iOSVariable(UIType type, string name,
 UIView viewx = null , UIView viewy = null) :
 base(type, name)
 {
 m_viewX = viewx;
 m_viewY = viewy;
 if (type != UIType.LOCATION && m_viewX != null) {
 m_viewX.Tag = ++m_currentTag;
 }
 }

 public virtual iOSVariable GetWidget(string widgetType,
 string widgetName, string initArg, CGRect rect)
 { /* ... */ }
 public virtual bool SetValue(string value1, str ing value2 = "")
 { /* ... */ }
 public virtual double GetValue()
 {
 double result = 0;
 if (m_viewX is UISwitch) {
 result = ((UISwitch)m_viewX).On ? 1 : 0;
 } else if (m_viewX is UISlider) {
 result = ((UISlider)m_viewX).Value;
 } else if (m_viewX is UIStepper) {
 result = ((UIStepper)m_viewX).Value;
 } else if (m_viewX is UIPickerView) {
 result = ((TypePickerViewModel)(((UIPickerView)m_viewX).Model)).
 SelectedRow;
 } else if (m_viewX is UISegmentedControl) {
 result = ((UISegmentedControl)m_viewX).SelectedSegment;
 }
 /* And so on ... */
 return result;
 }
 public virtual bool SetText(string text, string alignment = null)
 { /* ... */ }
 public virtual string GetText()
 { /* .. . */ }

 24

 public virtual void AddData(List <string > data, string varName,
 string title, string extra)
 { /* ... */ }
 public virtual void AddImages(List <UIImage> images,
 string varName, string t itle)
 { /* ... */ }
 public virtual bool SetFont (string name, double size = 0)
 { /* ... */ }
 public virtual bool SetFontSize(double val)
 { /* ... */ }
 public virtual bool SetFont Color (string colorStr)
 { /* ... */ }
 public virtual bool SetBol d(double size = 0)
 { /* ... */ }
 public virtual bool SetItalic (double size = 0)
 { /* ... */ }
 public virtual bool SetNormalFont (double size = 0)
 { /* ... */ }
 public virtual bool SetBackgroundColor(string colorStr,
 double alpha = 1.0)
 { /* ... */ }
 public static UIView GetView(string viewName, ParsingScript script)
 { /* ... */ }
 public UIView GetParentView()
 {
 iOSVariable parent = ParentView as iOSVariable ;
 if (parent != null) {
 retu rn parent.ViewX;
 }
 return AppDelegate .GetCurrentView();
 }

 UIView m_viewX;
 UIView m_viewY;
}

Code Listing 10: A Fragment of the DroidVariable Class

public class Droid Variable : UIVariable
{
 public DroidVariab le(UIType type, string name, View viewx = null ,
 View viewy = null) : base(type, name)
 {
 m_viewX = viewx;
 m_viewY = viewy;
 if (type != UIType.LOCATION && m_viewX != null) {
 m_viewX.Tag = ++m_currentTag;
 m_viewX.Id = m_currentTag;

 25

 }
 }

 public void SetViewLayout(int width, int height)
 {
 DroidVariable refView = Location?.RefViewX as DroidVariable ;
 m_viewX = MainActivity .CreateViewLayout(width, height,
 refView?.ViewLayout);
 }

 public virtual DroidVariable GetWidget(string widgetType,
 string widgetName, string initArg,
 int width, int height)
 { /* ... */ }
 public static Size GetLocation(View view)
 {
 if (view == null) {
 return null ;
 }
 int [] outArr = new int [2];
 view.GetLocationOnScreen(outArr);
 return new Size (outArr[0], outArr[1]);
 }

 public static View GetView(string viewName, ParsingScript scr ipt)
 {
 if (viewName.Equals("root" , StringComparison .OrdinalIgnoreCase)) {
 return null ;
 }
 ParserFunction func = ParserFunction .GetFunction(viewName);
 Variable viewValue = func.GetValue(script);
 DroidVariable viewVar = viewValue as DroidVariable ;
 return viewVar.ViewX;
 }

 /* Same SetXXX and GetXXX functions as for iOSVariable class... */

 View m_viewX;
 View m_viewY;
 LayoutRules m_layoutRuleX;
 LayoutRules m_layoutRuleY;
}

Summary

In this chapter, we reviewed the general structure of a project using CSCS scripting and where
in the project workflow the CSCS code is executed. It is done differently for iOS and for Android.

 26

We skipped a few details, since there is really a lot of code. However, since the devil is in the
details, for the full picture, check out the accompanying source code.

In the next chapter, we are going to dig into the details of placing widgets on the screen in a
platform-independent way.

https://github.com/vassilych/mobile

 27

Chapter 3 Placing Widgets on the Screen

ñAny sufficiently advanced technology is indistinguishable from magic.ò

Arthur C. Clarke

Layout concepts in CSCS

Different frameworks use different layout methods for placing widgets on the screenðmost
allow you to place widgets on the screen programmatically. Many also allow you to visually
drag-and-drop a widget anywhere on the screen.

For developing iOS apps with XCode, Apple created the Auto Layout concept and the
Storyboard. The widgets are placed on the screen according to the constraints among
themselves. When you run your app on a device or in a simulator, the layout may look different
from what you see on a Storyboard, where you dropped your widgets. This is due to the
different sizes of the Storyboard for different devices.

For Android development, the layout is often created defining the placement rules in the XML
layout files. Xamarin.Forms uses XAML files.

For CSCS development, we wonôt have a familiar drag-and-drop functionality. All the
placements of widgets are done programmatically. It is the same code for Android and for iOS.

In exchange, we will have more control over where to place the widgets. The learning curve is
quickerðthere are no XML schemas, no XAML files, and no Auto Layouts (I personally think
anyone who understands the workable concept of Auto Layouts in under a week is a genius of
our time).

For the layout definition, I used a mixture of the iOS and Android approaches. From the Auto
Layout, I applied the followingðfor the unique widget location, I need to have three concepts:

¶ Widget horizontal placement (relative to other widgets or to the main window).
¶ Widget vertical placement (relative to other widgets or to the main Window).
¶ Widget size.

The widget size can be absolute or relative. In the latter case, it will be automatically extended
or contracted, depending on the device size.

Thatôs it! I am not sure why the horizontal and vertical placements are allowed to be defined
multiple times, and inconsistently, in both iOS and Android, leading to conflicts; these conflicts
may be resolved with unexpected results during runtime. In CSCS, no conflicts are possible by
its layout design (how it works).

For the implementation, I took an approach similar to the concept of the Relative Layout in
Android. The difference with RelativeLayout is that itôs not possible to have multiple

https://developer.apple.com/library/content/documentation/UserExperience/Conceptual/AutolayoutPG/index.html
https://developer.android.com/guide/topics/ui/declaring-layout.html#write
https://developer.android.com/guide/topics/ui/declaring-layout.html#write
https://developer.xamarin.com/guides/xamarin-forms/xaml/xaml-basics/getting_started_with_xaml/
https://developer.android.com/guide/topics/ui/layout/relative.html

 28

definitions of the widget placement parametersðin Android, you can use the ApplyRule()

method for setting the widget placement rules an unlimited number of times, and Android wonôt
complain about any contradicting rules.

Letôs now start with the implementation. Some parts of what follows have been published in
CODE Magazine and MSDN Magazine.

Locations in CSCS

A widget definition in CSCS has either one or two statements. The first statement is the
definition of a locationðwhere to place the widgetðand the second one is the actual widget
definition, including its size.

 Tip: The same location can be used for different widgets.

One scenario is to show the user multiple widgets, one at a time, located in the same placeðan
example of that is shown in sfscript.cscs.

We already saw an example of placing widgets in Code Listing 1:

locSizeLabel = GetLocation(buttonClickme, "CENTER",
 buttonClickme, "BOTTOM");
AddLabel(locSizeLabel, "sizeLabel" , "" , 360, 60);

The general syntax of the location command is the following:

GetLocation(HorizontalReference, PlacementX,
 VerticalReference, PlacementY,
 AdjustmentX = 0, AdjustmentY = 0,
 UseScale = tru e, Scale Value = 0.0,
 Parent = null);

Here is the meaning of the parameters:

¶ HorizontalReference : The name of another widget for the horizontal placement. It can
be the string ROOT, meaning the parent widget or the main screen.

¶ PlacementX : A horizontal placement relative to the widget in the
HorizontalReference . Weôll discuss possible values below.

¶ VerticalReference : The name of another widget for the vertical placement. It can be
the string ROOT, meaning the parent widget or the main screen.

¶ PlacementY : A vertical placement relative to the widget in the VerticalReference .

http://www.codemag.com/Article/1711081/Developing-Cross-Platform-Native-Apps-with-a-Functional-Scripting-Language
https://msdn.microsoft.com/en-us/magazine/mt829272.aspx

 29

¶ AdjustmentX : The number of pixels the widget must be moved horizontally (this number
can be relative, depending on the AutoScale option which we will discuss below). It can
also be negative: the positive direction goes from left to right.

¶ AdjustmentY : The number of pixels the widget must be moved vertically. It can also be
negative: the positive direction goes from top to bottom. See also AutoScale below.

¶ UseScale : Whether to apply a scaling option to the widget. If true , the adjustment
specified in ScaleValue , discussed next, will be used.

¶ ScaleValue : The measure used for adjusting the size of this widget. It overrides the
value provided as an argument for the AutoScale() function.

¶ Parent : The parent of this widget. If null, the widget will be added to the Main Layout on
Android or to the Root View Controller View on iOS.

The possible values for the PlacementX and PlacementY parameters are very similar to the

constants of the Android RelativeLayout.LayoutParams class.

They can be any of the following: CENTER, LEFT, RIGHT, TOP, BOTTOM, ALIGN_LEFT,
ALIGN_RIGHT, ALIGN_TOP, ALIGN_BOTTOM, ALIGN_PARENT_LEFT, ALIGN_PARENT_RIGHT,
ALIGN_PARENT_TOP, or ALIGN_PARENT_BOTTOM.

The GetLocation() function is used for both iOS and Android. Check out its implementation for

iOS in Code Listing 11. The Android implementation is similar.

Code Listing 11: Implementation of the GetLocationFunction Class on iOS

public class GetLocationFunction : Pars erFunction
{
 protected override Variable Evaluate(ParsingScript script)
 {
 List <Variable > args = script.GetFunctionArgs();
 Utils .CheckArgs(args.Count, 4, m_name);

 string viewNameX = args[0].AsString();
 string ruleStrX = args[1].AsStri ng();
 string viewNameY = args[2].AsString();
 string ruleStrY = args[3].AsString();

 int leftMargin = Utils .GetSafeInt(args, 4);
 int topMargin = Utils .GetSafeInt(args, 5);

 bool autoResize = Utils .GetSafeInt(args, 6, 1) == 1;
 if (autoResize) {
 double multiplier = Utils .GetSafeDouble(args, 7);
 AutoScaleFunction .TransformSizes(ref leftMargin, ref topMargin,
 (int) UtilsiOS .GetRealScreenWidth(), multiplier);
 }

 30

 Variable parentView = Utils .GetSa feVariable(args, 8, null);

 UIView referenceViewX = iOSVariable .GetView(viewNameX, script);
 UIView referenceViewY = iOSVariable .GetView(viewNameY, script);
 iOSVariable location = new iOSVariable (UIVariable . UIType.LOCATION,
 viewNameX + viewNameY, referenceViewX, referenceViewY);

 location.SetRules(ruleStrX, ruleStrY);
 location.ParentView = parentView as UIVariable ;

 double screenRatio = UtilsiOS .GetScreenRatio();
 location.TranslationX = (int)(leftMargin / screenRat io);
 location.TranslationY = (int)(topMargin / screenRatio);

 return location;
 }
}

To register the GetLocation() function with the parser, the following command must be added

in the initialization phase (see Code Listing 4):

ParserFunction .RegisterFunction("GetLocation" , new GetLocationFunction ());

Adding widgets

Once we have a location, we can create a widget. The general structure of this function is:

AddWidget(widgetType, location, widgetName, initS tring, width, height);

There are shortcuts of this command for each widget type, for example:

AddLabel(location, widgetName, initString, width, height);
AddButton(location, widgetName, initString, width, height);
AddImageView(location, widgetName, i nitString, width, height);

And so on. Calling the functions above is equivalent to calling the following:

AddWidget("Label" , location, widgetName, initString, width, height);
AddWidget("Button" , location, widgetName, initString, width, height);
AddWidget("ImageView" , location, widgetName, initString, width, height);

Here is the meaning of the parameters:

¶ location : The location of the widget, defined in the previous section.
¶ widgetName: the name of the widget. It will be always a global variable, even if used

inside of a function.

 31

¶ initString : The initialization parameter of the widget. For example, it will be a text on a
label or a title on a button.

¶ width : The width of the widget.
¶ height : The height of the widget.

Check out a fragment of the AddWidget() function implementation in Code Listing 12. The

implementation is for iOS. The Android implementation is very similar.

Code Listing 12: A Fragment of the AddWidgetFunction Class

public class AddWidgetFunction : ParserFunction
{
 public AddWidgetFunction(string widgetType = "" , string extras = "")
 {
 m_widgetType = widgetType;
 m_extras = extras;
 }
 protected override Variable Evaluate(ParsingScript script)
 {
 str ing widgetType = m_widgetType;
 int start = string .IsNullOrEmpty(widgetType) ? 1 : 0;
 List <Variable > args = script.GetFunctionArgs();
 Utils .CheckArgs(args.Count, 2 + start, m_name);

 if (start == 1) {
 widgetType = args[0].AsString();
 Utils .CheckNotEmpty(script, widgetType, m_name);
 }

 iOSVariable location = args[start] as iOSVariable ;
 Utils .CheckNotNull(location, m_name);

 double screenRatio = UtilsiOS .GetScreenRatio();

 string varName = args[start + 1].AsStri ng();
 string config = Utils .GetSafeString(args, start + 2);
 int width = (int)(Utils .GetSafeInt(args, start + 3) / screenRatio);
 int height = (int)(Utils .GetSafeInt(args, start + 4) / screenRatio);

 bool autoResize = Utils .GetSafeInt(args, start + 5, 1) == 1;
 if (autoResize) {
 double multiplier = Utils .GetSafeDouble(args, start + 6);
 AutoScaleFunction.TransformSizes(ref width, ref height,
 (int) UtilsiOS .GetRealScreenWidth(), multiplier);
 }

 CGSize parentSize = loc ation.GetParentSize();

 location.X = UtilsiOS .String2Position(location.RuleX,
 location.ViewX, location, parentSize, true);

 32

 location.Y = UtilsiOS .String2Position(location.RuleY,
 location.ViewY, location, paren tSize, false);

 location.X += location.TranslationX;
 location.Y += location.TranslationY;

 CGRect rect = new CGRect(location.X, location.Y, width, height);

 iOSVariable widgetFunc = GetWidget(widgetType, varName,config, rect);
 var currV iew = location.GetParentView();
 currView.Add(widgetFunc.ViewX);

 iOSApp.AddView(widgetFunc);

 ParserFunction .AddGlobal(varName, new GetVarFunction (widgetFunc));
 return widgetFunc;
 }

 public static iOSVariable GetWidget(string widgetType ,
 string widgetName, string initArg, CGRect rect)
 {
 for (int i = 0; i < UIVariable .WidgetTypes.Count; i++) {
 iOSVariable var = UIVariable .WidgetTypes[i] as iOSVariable ;
 var widget = var.GetWidget(widgetType, widgetName, i nitArg, rect);
 if (widget != null) {
 return widget;
 }
 }
 return null ;
 }
}

The code responsible for the actual creation of the widgets is in the iOSVariable class. Its

fragment is shown in Code Listing 13.

For complete implementation, including the implementation of the function
UtilsiOS.String2Position() , which returns an actual point on the screen, refer to the

accompanying source code.

Code Listing 13: A Fragment of the iOSVariable.GetWidget Method

public virtual iOSVariable GetWidget(string widgetType, string widgetName,
 string initArg, CGRect rect)
{
 UIVariable . UIType type = UIVariable . UIType.NONE;
 UIView wi dget = null ;
 iOSVariable widgetFunc = null ;
 switch (widgetType) {

 33

 case "Button" :
 type = UIVariable . UIType.BUTTON;
 widget = new UIButton (rect);
 ((UIButton)widget).SetTitle(initArg, UIControlState .Normal);
 AddBorderFunc tion .AddBorder(widget);
 break ;
 case "Label" :
 type = UIVariable . UIType.LABEL;
 widget = new UILabel (rect);
 ((UILabel)widget).Text = initArg;
 break ;
 case "TextEdit" :
 // All other widgets go here ...
 }
 if (widgetFun c == null) {
 widgetFunc = new iOSVariable (type, widgetName, widget);
 }
 return widgetFunc;
}

To register the functionality of adding new widgets with the parser, the following commands

must be added in the initialization phase (see Code Listing 4):

ParserFunction .RegisterFunction("AddWidget" , new AddWidgetFunction ());
ParserFunction .RegisterFunction("AddButton" ,
 new AddWidgetFunction ("Button"));
ParserFunction .RegisterFunct ion("AddLabel" ,
 new AddWidgetFunction ("Label"));

And so on, for each widget.

Implementing device orientation changes

It is not so straightforward to write an app that has different layouts on different device
orientations. Even the heavyweights, like LinkedIn, Facebook, Amazon, Uber, The Weather
Channel, and many others, have implemented their apps only in the Portrait mode (at least for
iOS, at the time of this writing); nothing happens with these apps when you change your device
orientation.

In this section our goal is to simplify changing the layouts when the device orientation changes.
Here we are going to see the Android implementation (you can find the iOS implementation in
the accompanying source code).

First of all, we must add the following in the MainActivity class definition:

ConfigurationChanges = ConfigChanges .ScreenSize |
 ConfigChanges .Orientation |

 34

 ConfigChanges .KeyboardHidden

Basically, it means that the app will handle the orientation changes by itself. Without this
change, the MainActivity.OnCreate() method would be called every time there is a change

in the orientation (there are also some other cases when it would be called, in particular when
the app comes back from the background to the foreground).

Next, the MainActivity.OnConfigurationChange() method is overridden:

public override void OnConfigurationChanged(Configuration newConfig)
{
 OnOrientationChange? .Invoke(newConfig.Orientation ==
 Orientation.Portrait ? "Portrait" : "Landscape") ;
 base.OnConfigurationChanged(newConfig);
}

It uses the OnOrientationChange event handler, defined as follows:

public delegate void OrientationChange (string newOrientation);
public static Orient ationChange OnOrientationChange;

Now we are ready to register the CSCS functions to be triggered on orientation changes:

ParserFunction .RegisterFunction("RegisterOrientationChange" ,
 new RegisterOrientationChangeFunction ());

Code Listing 14 shows the implementation of the RegisterOrientat ionChangeFunction

class.

Code Listing 14: Implementation of the RegisterOrientationChangeFunction Class

public class RegisterOrientationChangeFunction : ParserFunction
{
 static string m_actionPortrait;
 static string m_actionLandscape;
 static string m_currentOrientation;

 protected override Variable Evaluate(ParsingScript script)
 {
 List <Variable > args = script .GetFunctionArgs();
 Utils .CheckArgs(args.Count, 2, m_name);

 m_actionPortrait = Utils .GetSafeString(args, 0);
 m_actionLandscape = Utils .GetSafeString(args, 1);
 bool startNow = Utils .GetSafeInt(args, 2, 1) != 0;

 if (startNow) {
 PerformAction(MainActivity .Orientation, true);
 }

 35

 MainActivity .OnOrientationChange += (newOrientation) => {
 DeviceRotated();
 };
 return Variable .EmptyInstance;
 }
 static void DeviceRotated()
 {
 string currentOrientation = MainActivity .Orientation;
 if (m_currentOrientation == currentOrientation) {
 return ;
 }

 PerformAction(currentOrientation);
 }
 static void PerformAction(string orientation, bool isInit = false)
 {
 m_currentOrientation = orientation;
 int currentTab = MainActivity .CurrentTabId;

 if (!isInit) {
 MainActivity .RemoveAll();
 }

 string action = orientation.Contains("Portrait") ?
 m_actionPortrait: m_actionLandscape;

 UIVariable .GetActio n(action, " \ " ROOT\ " " ,
 " \ " " + (isInit ? "init" : m_currentOrientation) + " \ " ");

 if (!isInit && currentTab >= 0) {
 MainActivity .TheView.ChangeTab(currentTab);
 }
 }
}

The UIVariable.GetAction() function executes the passed action. The action is usually the

name of a CSCS function. The next section shows an example of changing the device layout on
orientation changes.

Example: Currency Convertor

In this section, we are going to create the Currency Convertor app in CSCS from scratch. As the
source of the currency rates, weôll be using the currencylayer.com service. Their site provides
an easy-to-use web service, with the first 1,000 requests per month provided for free. It also
provides the exchange rates for Bitcoin, which will be the theme of this app. To get data, you

https://currencylayer.com/

 36

need a unique key, which you must supply with every request. You get that key upon registering
at their website.

Letôs first see how the app looks in portrait mode in Figure 3, and in landscape mode in Figure

4, for both iPhone and Android phones.

Figure 3: Currency Convertor in the Portrait Mode for iOS (left) and Android (right)

https://currencylayer.com/signup?plan=1
https://currencylayer.com/signup?plan=1

